Spaces:
Running
Running
File size: 16,253 Bytes
2e66664 5eedccd 2e66664 6fc042a 2e66664 5eedccd 2e66664 6d6c0d5 2e66664 f9582e0 e30570e f9582e0 5eedccd 2e66664 e30570e 2e66664 e30570e 2e66664 bc92652 2e66664 6fc042a 2e66664 6fc042a 2e66664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import torch
import soundfile as sf
import numpy as np
import argparse
import os
import yaml
import julius
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))
from networks import Dasp_Mastering_Style_Transfer, Effects_Encoder
from modules.loss import AudioFeatureLoss, Loss
def convert_audio(wav: torch.Tensor, from_rate: float,
to_rate: float, to_channels: int) -> torch.Tensor:
"""Convert audio to new sample rate and number of audio channels.
"""
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
wav = convert_audio_channels(wav, to_channels)
return wav
class MasteringStyleTransfer:
def __init__(self, args):
self.args = args
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
self.effects_encoder = self.load_effects_encoder()
self.mastering_converter = self.load_mastering_converter()
def load_effects_encoder(self):
effects_encoder = Effects_Encoder(self.args.cfg_enc)
reload_weights(effects_encoder, self.args.encoder_path, self.device)
effects_encoder.to(self.device)
effects_encoder.eval()
return effects_encoder
def load_mastering_converter(self):
mastering_converter = Dasp_Mastering_Style_Transfer(num_features=2048,
sample_rate=self.args.sample_rate,
tgt_fx_names=['eq', 'distortion', 'multiband_comp', 'gain', 'imager', 'limiter'],
model_type='tcn',
config=self.args.cfg_converter,
batch_size=1)
reload_weights(mastering_converter, self.args.model_path, self.device)
mastering_converter.to(self.device)
mastering_converter.eval()
return mastering_converter
def get_reference_embedding(self, reference_tensor):
with torch.no_grad():
reference_feature = self.effects_encoder(reference_tensor)
return reference_feature
def mastering_style_transfer(self, input_tensor, reference_feature):
with torch.no_grad():
output_audio = self.mastering_converter(input_tensor, reference_feature)
predicted_params = self.mastering_converter.get_last_predicted_params()
return output_audio, predicted_params
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
fit_embedding = torch.nn.Parameter(initial_reference_feature)
optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])
af_loss = AudioFeatureLoss(
weights=ito_config['af_weights'],
sample_rate=ito_config['sample_rate'],
stem_separation=False,
use_clap=False
)
min_loss = float('inf')
min_loss_step = 0
min_loss_output = None
min_loss_params = None
min_loss_embedding = None
loss_history = []
divergence_counter = 0
ito_log = []
for step in range(ito_config['num_steps']):
optimizer.zero_grad()
output_audio = self.mastering_converter(input_tensor, fit_embedding)
current_params = self.mastering_converter.get_last_predicted_params()
losses = af_loss(output_audio, reference_tensor)
total_loss = sum(losses.values())
loss_history.append(total_loss.item())
if total_loss < min_loss:
min_loss = total_loss.item()
min_loss_step = step
min_loss_output = output_audio.detach()
min_loss_params = current_params
min_loss_embedding = fit_embedding.detach().clone()
# Check for divergence
if len(loss_history) > 10 and total_loss > loss_history[-11]:
divergence_counter += 1
else:
divergence_counter = 0
# Log top 10 parameter differences
if step == 0:
initial_params = current_params
top_10_diff = self.get_top_10_diff_string(initial_params, current_params)
log_entry = f"Step {step + 1}, Loss: {total_loss.item():.4f}\n{top_10_diff}\n"
ito_log.append(log_entry)
if divergence_counter >= 10:
print(f"Optimization stopped early due to divergence at step {step}")
break
total_loss.backward()
optimizer.step()
return min_loss_output, min_loss_params, min_loss_embedding, min_loss_step + 1, "\n".join(ito_log)
def preprocess_audio(self, audio, target_sample_rate=44100):
sample_rate, data = audio
# Normalize audio to -1 to 1 range
if data.dtype == np.int16:
data = data.astype(np.float32) / 32768.0
elif data.dtype == np.float32:
data = np.clip(data, -1.0, 1.0)
else:
raise ValueError(f"Unsupported audio data type: {data.dtype}")
# Ensure stereo channels
if data.ndim == 1:
data = np.stack([data, data])
elif data.ndim == 2:
if data.shape[0] == 2:
pass # Already in correct shape
elif data.shape[1] == 2:
data = data.T
else:
data = np.stack([data[:, 0], data[:, 0]]) # Duplicate mono channel
else:
raise ValueError(f"Unsupported audio shape: {data.shape}")
# Convert to torch tensor
data_tensor = torch.FloatTensor(data).unsqueeze(0)
# Resample if necessary
if sample_rate != target_sample_rate:
data_tensor = julius.resample_frac(data_tensor, sample_rate, target_sample_rate)
return data_tensor.to(self.device)
def process_audio(self, input_audio, reference_audio, ito_reference_audio, params, perform_ito, log_ito=False):
input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate)
reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
ito_reference_tensor = self.preprocess_audio(ito_reference_audio, self.args.sample_rate)
reference_feature = self.get_reference_embedding(reference_tensor)
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
if perform_ito:
ito_log = []
for i in range(self.args.max_iter_ito):
loss, ito_predicted_params = self.ito_step(input_audio, ito_reference_audio, predicted_params)
if log_ito:
top_10_diff = self.get_top_10_diff(predicted_params, ito_predicted_params)
log_entry = f"Iteration {i+1}, Loss: {loss:.4f}\nTop 10 parameter differences:\n{top_10_diff}\n"
ito_log.append(log_entry)
predicted_params = ito_predicted_params
ito_output_audio = self.converter.convert(input_audio, predicted_params)
ito_log = "\n".join(ito_log) if log_ito else None
else:
ito_output_audio = None
ito_predicted_params = None
ito_log = None
return output_audio, predicted_params, ito_output_audio, ito_predicted_params, ito_log, self.args.sample_rate
def print_param_difference(self, initial_params, ito_params):
all_diffs = []
print("\nAll parameter differences:")
for fx_name in initial_params.keys():
print(f"\n{fx_name.upper()}:")
if isinstance(initial_params[fx_name], dict):
for param_name in initial_params[fx_name].keys():
initial_value = initial_params[fx_name][param_name]
ito_value = ito_params[fx_name][param_name]
# Calculate normalized difference
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
all_diffs.append((fx_name, param_name, initial_value, ito_value, normalized_diff))
print(f" {param_name}:")
print(f" Initial: {initial_value.item():.4f}")
print(f" ITO: {ito_value.item():.4f}")
print(f" Normalized Diff: {normalized_diff.item():.4f}")
else:
initial_value = initial_params[fx_name]
ito_value = ito_params[fx_name]
# For 'imager', assume range is 0 to 1
normalized_diff = abs(ito_value - initial_value)
all_diffs.append((fx_name, 'width', initial_value, ito_value, normalized_diff))
print(f" width:")
print(f" Initial: {initial_value.item():.4f}")
print(f" ITO: {ito_value.item():.4f}")
print(f" Normalized Diff: {normalized_diff.item():.4f}")
# Sort differences by normalized difference and get top 10
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:10]
print("\nTop 10 parameter differences (sorted by normalized difference):")
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
print(f"{fx_name.upper()} - {param_name}:")
print(f" Initial: {initial_value.item():.4f}")
print(f" ITO: {ito_value.item():.4f}")
print(f" Normalized Diff: {normalized_diff.item():.4f}")
print()
def print_predicted_params(self, predicted_params):
if predicted_params is None:
print("No predicted parameters available.")
return
print("Predicted Parameters:")
for fx_name, fx_params in predicted_params.items():
print(f"\n{fx_name.upper()}:")
if isinstance(fx_params, dict):
for param_name, param_value in fx_params.items():
if isinstance(param_value, torch.Tensor):
param_value = param_value.detach().cpu().numpy()
print(f" {param_name}: {param_value}")
elif isinstance(fx_params, torch.Tensor):
param_value = fx_params.detach().cpu().numpy()
print(f" {param_value}")
else:
print(f" {fx_params}")
def get_param_output_string(self, params):
if params is None:
return "No parameters available"
output = []
for fx_name, fx_params in params.items():
output.append(f"{fx_name.upper()}:")
if isinstance(fx_params, dict):
for param_name, param_value in fx_params.items():
if isinstance(param_value, torch.Tensor):
param_value = param_value.item()
output.append(f" {param_name}: {param_value:.4f}")
elif isinstance(fx_params, torch.Tensor):
output.append(f" {fx_params.item():.4f}")
else:
output.append(f" {fx_params:.4f}")
return "\n".join(output)
def get_top_10_diff_string(self, initial_params, ito_params):
if initial_params is None or ito_params is None:
return "Cannot compare parameters"
all_diffs = []
for fx_name in initial_params.keys():
if isinstance(initial_params[fx_name], dict):
for param_name in initial_params[fx_name].keys():
initial_value = initial_params[fx_name][param_name]
ito_value = ito_params[fx_name][param_name]
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
all_diffs.append((fx_name, param_name, initial_value.item(), ito_value.item(), normalized_diff.item()))
else:
initial_value = initial_params[fx_name]
ito_value = ito_params[fx_name]
normalized_diff = abs(ito_value - initial_value)
all_diffs.append((fx_name, 'width', initial_value.item(), ito_value.item(), normalized_diff.item()))
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:10]
output = ["Top 10 parameter differences (sorted by normalized difference):"]
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
output.append(f"{fx_name.upper()} - {param_name}:")
output.append(f" Initial: {initial_value:.4f}")
output.append(f" ITO: {ito_value:.4f}")
output.append(f" Normalized Diff: {normalized_diff:.4f}")
output.append("")
return "\n".join(output)
def reload_weights(model, ckpt_path, device):
checkpoint = torch.load(ckpt_path, map_location=device)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["model"].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)
if __name__ == "__main__":
basis_path = '/data2/tony/Mastering_Style_Transfer/results/dasp_tcn_tuneenc_daspman_loudnessnorm/ckpt/1000/'
parser = argparse.ArgumentParser(description="Mastering Style Transfer")
parser.add_argument("--input_path", type=str, required=True, help="Path to input audio file")
parser.add_argument("--reference_path", type=str, required=True, help="Path to reference audio file")
parser.add_argument("--ito_reference_path", type=str, required=True, help="Path to ITO reference audio file")
parser.add_argument("--model_path", type=str, default=f"{basis_path}dasp_tcn_tuneenc_daspman_loudnessnorm_mastering_converter_1000.pt", help="Path to mastering converter model")
parser.add_argument("--encoder_path", type=str, default=f"{basis_path}dasp_tcn_tuneenc_daspman_loudnessnorm_effects_encoder_1000.pt", help="Path to effects encoder model")
parser.add_argument("--perform_ito", action="store_true", help="Whether to perform ITO")
parser.add_argument("--optimizer", type=str, default="RAdam", help="Optimizer for ITO")
parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate for ITO")
parser.add_argument("--num_steps", type=int, default=100, help="Number of optimization steps for ITO")
parser.add_argument("--af_weights", nargs='+', type=float, default=[0.1, 0.001, 1.0, 1.0, 0.1], help="Weights for AudioFeatureLoss")
parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate for AudioFeatureLoss")
parser.add_argument("--path_to_config", type=str, default='/home/tony/mastering_transfer/networks/configs.yaml', help="Path to network architecture configuration file")
args = parser.parse_args()
# load network configurations
with open(args.path_to_config, 'r') as f:
configs = yaml.full_load(f)
args.cfg_converter = configs['TCN']['param_mapping']
args.cfg_enc = configs['Effects_Encoder']['default']
ito_config = {
'optimizer': args.optimizer,
'learning_rate': args.learning_rate,
'num_steps': args.num_steps,
'af_weights': args.af_weights,
'sample_rate': args.sample_rate
}
mastering_style_transfer = MasteringStyleTransfer(args)
output_audio, predicted_params, ito_output_audio, ito_predicted_params, optimized_reference_feature, sr, ito_steps = mastering_style_transfer.process_audio(
args.input_path, args.reference_path, args.ito_reference_path, ito_config, args.perform_ito
)
# Save the output audio
sf.write("output_mastered.wav", output_audio.T, sr)
if ito_output_audio is not None:
sf.write("ito_output_mastered.wav", ito_output_audio.T, sr)
|