Jingxiang Mo commited on
Commit
4970856
·
1 Parent(s): 9522bb7

Interface improvements

Browse files
Files changed (2) hide show
  1. app.py +26 -48
  2. requirements.txt +5 -0
app.py CHANGED
@@ -30,62 +30,40 @@ class KeyphraseExtractionPipeline(TokenClassificationPipeline):
30
  model_name = "ml6team/keyphrase-extraction-kbir-inspec"
31
  extractor = KeyphraseExtractionPipeline(model=model_name)
32
 
33
- text = """
34
- Keyphrase extraction is a technique in text analysis where you extract the
35
- important keyphrases from a document. Thanks to these keyphrases humans can
36
- understand the content of a text very quickly and easily without reading it
37
- completely. Keyphrase extraction was first done primarily by human annotators,
38
- who read the text in detail and then wrote down the most important keyphrases.
39
- The disadvantage is that if you work with a lot of documents, this process
40
- can take a lot of time.
41
-
42
- Here is where Artificial Intelligence comes in. Currently, classical machine
43
- learning methods, that use statistical and linguistic features, are widely used
44
- for the extraction process. Now with deep learning, it is possible to capture
45
- the semantic meaning of a text even better than these classical methods.
46
- Classical methods look at the frequency, occurrence and order of words
47
- in the text, whereas these neural approaches can capture long-term
48
- semantic dependencies and context of words in a text.
49
- """.replace("\n", " ")
50
-
51
- keyphrases = extractor(text)
52
-
53
- print(keyphrases)
54
-
55
-
56
- def keyphrases_out(input):
57
- input = input.replace("\n", " ")
58
- keyphrases = extractor(input)
59
- out = "The Key Phrases in your text are:\n\n"
60
- for k in keyphrases:
61
- out += k + "\n"
62
  return keyphrases
63
 
64
- def wikipedia_search(input):
65
  input = input.replace("\n", " ")
66
- keyphrases = extractor(input)
67
  wiki = wk.Wikipedia('en')
68
-
69
- page = wiki.page("")
70
- return page.summary
71
-
72
-
73
-
74
-
75
- # for k in keyphrases:
76
- # page = wiki.page(k)
77
- # if page.exists():
78
- # break
79
- # return page.summary
80
 
81
  # =====[ DEFINE INTERFACE ]===== #'
82
- # demo = gr.Interface(fn=wikipedia_search, inputs = "text", outputs = "text")
83
- # demo.launch(share=True)
84
-
85
-
86
-
87
 
88
 
 
 
89
 
 
 
 
90
 
 
 
91
 
 
 
 
30
  model_name = "ml6team/keyphrase-extraction-kbir-inspec"
31
  extractor = KeyphraseExtractionPipeline(model=model_name)
32
 
33
+ #TODO: add further preprocessing
34
+ def keyphrases_extraction(text: str) -> str:
35
+ keyphrases = extractor(text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  return keyphrases
37
 
38
+ def wikipedia_search(input: str) -> str:
39
  input = input.replace("\n", " ")
40
+ keyphrases = keyphrases_extraction(input)
41
  wiki = wk.Wikipedia('en')
42
+
43
+ try :
44
+ #TODO: add better extraction and search
45
+ page = wiki.page(keyphrases[0])
46
+ return page.summary
47
+ except:
48
+ return "I cannot answer this question"
 
 
 
 
 
49
 
50
  # =====[ DEFINE INTERFACE ]===== #'
51
+ title = "Azza Chatbot"
52
+ examples = [
53
+ ["Where is the Eiffel Tower?"],
54
+ ["What is the population of France?"]
55
+ ]
56
 
57
 
58
+ demo = gr.Interface(
59
+ title = title,
60
 
61
+ fn=wikipedia_search,
62
+ inputs = "text",
63
+ outputs = "text",
64
 
65
+ examples=examples
66
+ )
67
 
68
+ if __name__ == "__main__":
69
+ demo.launch(share=True)
requirements.txt CHANGED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ os
2
+ gradio
3
+ wikipedia-api
4
+ transformers
5
+ transformers.pipelines