File size: 1,677 Bytes
ea225b5 25a5cc8 b7a5199 25a5cc8 b7a5199 25a5cc8 beebab3 b7a5199 4710fcc beebab3 b7a5199 4710fcc beebab3 4710fcc 25a5cc8 b7a5199 25a5cc8 b7a5199 25a5cc8 b7a5199 25a5cc8 4710fcc 25a5cc8 b7a5199 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import pipeline
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="canary/asr-small-librispeech", device=0)
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
# Function to capture audio using Canary ASR
def capture_audio():
print("Listening for cue words...")
while True:
audio_input = asr_pipeline(None)[0]['input_values']
transcript = asr_pipeline(audio_input)[0]['transcription']
if "hey canary" in transcript.lower():
print("Cue word detected!")
break
print("Listening...")
return audio_input
# AI assistant function
def ai_assistant(audio_input):
# Perform automatic speech recognition (ASR)
transcript = asr_pipeline(audio_input)[0]['transcription']
# Perform question answering (QA)
qa_result = qa_pipeline(question=transcript, context="Insert your context here")
# Convert the QA result to speech using text-to-speech (TTS)
tts_output = tts_pipeline(qa_result['answer'])
return tts_output[0]['audio']
if __name__ == "__main__":
# Create a Gradio interface
gr.Interface(ai_assistant,
inputs=gr.inputs.Audio(capture= capture_audio, label="Speak Here"),
outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
title="AI Assistant",
description="An AI Assistant that answers questions based on your speech input.")
.launch()
|