DCLM-demo / app.py
jmercat's picture
first commit
5ae38c5
raw
history blame
4.43 kB
import gradio as gr
from threading import Thread
from open_lm.hf import *
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from gradio.layouts import Accordion
# Define model options
MODEL_OPTIONS = {
"TRI-ML/DCLM-1B": "TRI-ML/DCLM-1B",
"Apple DCLM-Baseline-7B": "apple/DCLM-Baseline-7B"
}
# Global variables for model and tokenizer
current_model = None
current_tokenizer = None
def load_model(model_name):
global current_model, current_tokenizer
current_tokenizer = AutoTokenizer.from_pretrained(MODEL_OPTIONS[model_name])
current_model = AutoModelForCausalLM.from_pretrained(MODEL_OPTIONS[model_name])
device = "cuda" if torch.cuda.is_available() else "cpu"
current_model = current_model.to(device)
return f"Loaded model: {model_name}"
def generate(
prompt, model_choice, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
return "Please load a model first."
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
generate_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=current_tokenizer.eos_token_id
)
streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs["streamer"] = streamer
thread = Thread(target=current_model.generate, kwargs=generate_kwargs)
thread.start()
# Write the prompt in blue
output = "<span style='color: blue;'>" + prompt + "</span>"
for new_text in streamer:
if isinstance(new_text, torch.Tensor):
new_text = current_tokenizer.decode(new_text)
output += new_text
yield output
thread.join()
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks() as demo:
gr.Markdown(
"""
# DCLM Text Completion Demo
This demo allows you to generate text using a DCLM model.
These models are trained to predict the next word in a sequence of text, and can be used to generate text completions, they are not chatbots.
First select a model from the dropdown and click "Load Model".
Then enter some text in the text box and click "Generate" to see the model's completion.
"""
)
with gr.Row():
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model")
model_dropdown.select(
load_model,
inputs=[model_dropdown],
outputs=[gr.Textbox(label="Model Status")]
)
text_input = gr.Textbox(lines=3, label="Input Text")
text_output = gr.HTML(label="Generated Text")
generate_button = gr.Button("Generate")
generate_button.click(
generate,
inputs=[text_input, model_dropdown, *additional_inputs],
outputs=[text_output]
)
with Accordion(label="Advanced Options", open=False):
for input_component in additional_inputs:
if not input_component.is_rendered:
input_component.render()
demo.launch()