|
import gradio as gr |
|
from threading import Thread |
|
from open_lm.hf import * |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import torch |
|
from gradio.layouts import Accordion |
|
|
|
|
|
MODEL_OPTIONS = { |
|
"TRI-ML/DCLM-1B": "TRI-ML/DCLM-1B", |
|
"Apple DCLM-Baseline-7B": "apple/DCLM-Baseline-7B" |
|
} |
|
|
|
|
|
current_model = None |
|
current_tokenizer = None |
|
|
|
def load_model(model_name): |
|
global current_model, current_tokenizer |
|
current_tokenizer = AutoTokenizer.from_pretrained(MODEL_OPTIONS[model_name]) |
|
current_model = AutoModelForCausalLM.from_pretrained(MODEL_OPTIONS[model_name]) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
current_model = current_model.to(device) |
|
return f"Loaded model: {model_name}" |
|
|
|
def generate( |
|
prompt, model_choice, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
global current_model, current_tokenizer |
|
|
|
if current_model is None or current_tokenizer is None: |
|
return "Please load a model first." |
|
|
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device) |
|
|
|
generate_kwargs = dict( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
pad_token_id=current_tokenizer.eos_token_id |
|
) |
|
|
|
streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs["streamer"] = streamer |
|
|
|
thread = Thread(target=current_model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
|
|
output = "<span style='color: blue;'>" + prompt + "</span>" |
|
for new_text in streamer: |
|
if isinstance(new_text, torch.Tensor): |
|
new_text = current_tokenizer.decode(new_text) |
|
output += new_text |
|
yield output |
|
|
|
thread.join() |
|
return output |
|
|
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.9, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=256, |
|
minimum=0, |
|
maximum=1048, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.2, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# DCLM Text Completion Demo |
|
This demo allows you to generate text using a DCLM model. |
|
These models are trained to predict the next word in a sequence of text, and can be used to generate text completions, they are not chatbots. |
|
|
|
First select a model from the dropdown and click "Load Model". |
|
Then enter some text in the text box and click "Generate" to see the model's completion. |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model") |
|
|
|
model_dropdown.select( |
|
load_model, |
|
inputs=[model_dropdown], |
|
outputs=[gr.Textbox(label="Model Status")] |
|
) |
|
|
|
text_input = gr.Textbox(lines=3, label="Input Text") |
|
text_output = gr.HTML(label="Generated Text") |
|
|
|
generate_button = gr.Button("Generate") |
|
|
|
generate_button.click( |
|
generate, |
|
inputs=[text_input, model_dropdown, *additional_inputs], |
|
outputs=[text_output] |
|
) |
|
with Accordion(label="Advanced Options", open=False): |
|
for input_component in additional_inputs: |
|
if not input_component.is_rendered: |
|
input_component.render() |
|
|
|
demo.launch() |
|
|