Spaces:
Running
Running
File size: 95,806 Bytes
68ad1d6 2fa321f 8b0b5c8 2fa321f 2ea45d7 2fa321f 68ad1d6 8b0b5c8 94e5651 4b527a7 ac8d9e3 68ad1d6 699daf6 eb9ce8c e6a4e57 90e730d e973df1 af117a1 e973df1 68ad1d6 eb9ce8c 68ad1d6 554eeb1 68ad1d6 2fa321f 68ad1d6 eb9ce8c 68ad1d6 2fa321f ac8d9e3 2fa321f 903377a 2fa321f bc823ad 2fa321f 94e5651 68ad1d6 2fa321f 68ad1d6 ac8d9e3 68ad1d6 903377a 68ad1d6 2fa321f ac8d9e3 68ad1d6 903377a 68ad1d6 bc823ad 554eeb1 68ad1d6 eb9ce8c 2ea45d7 68ad1d6 5bde136 68ad1d6 8b0b5c8 68ad1d6 3f7ce2f 8ec8299 f2b8b7c 68ad1d6 8b0b5c8 7e6a2ad 8b0b5c8 68ad1d6 8b0b5c8 68ad1d6 7e6a2ad 90c1f3a 7e6a2ad 90c1f3a 7e6a2ad 68ad1d6 7fb33fd 68ad1d6 05fe1d3 68ad1d6 05fe1d3 68ad1d6 7fb33fd 68ad1d6 7fb33fd 68ad1d6 8b0b5c8 68ad1d6 3f7ce2f 2fa321f 68ad1d6 8b0b5c8 3f7ce2f 8ec8299 7fb33fd 3e9d498 8b0b5c8 cc3590e 8b0b5c8 e1d334d 8b0b5c8 cbf4fb4 90c1f3a 554eeb1 0eb13c3 8b0b5c8 cc3590e 8b0b5c8 3f7ce2f 8b0b5c8 3f7ce2f 8b0b5c8 2fa321f 8b0b5c8 903377a 7d44ee0 903377a 7d44ee0 9a42d26 7d44ee0 c4de53c 7d44ee0 9a42d26 7d44ee0 4115d51 bb8c143 7d44ee0 bb8c143 7d44ee0 4115d51 bb8c143 4115d51 bb8c143 4115d51 bb8c143 7d44ee0 4115d51 7d44ee0 4115d51 7d44ee0 4115d51 7d44ee0 4115d51 7d44ee0 4115d51 7d44ee0 c4de53c 7d44ee0 2cdfa88 903377a c46d625 3f7ce2f 8b0b5c8 0eb13c3 c187e7a 8b0b5c8 08fc9b9 c187e7a 8b0b5c8 c187e7a 0eb13c3 2cdfa88 0eb13c3 c187e7a bc823ad 7fb33fd bc823ad 2cdfa88 0eb13c3 bc823ad c187e7a 05fe1d3 5bde136 3f7ce2f 577ab1c c187e7a 577ab1c c187e7a 8b0b5c8 3f7ce2f 08ad3ee 873355a 08ad3ee 873355a 08ad3ee 8b0b5c8 08ad3ee 05fe1d3 c4de53c 05fe1d3 7d44ee0 2fa321f 8b0b5c8 2fa321f 8b0b5c8 68ad1d6 8b0b5c8 8ec8299 2ea45d7 8ec8299 07d08e7 4b527a7 07d08e7 8b0b5c8 68ad1d6 2ea45d7 8ec8299 68ad1d6 8b0b5c8 342f1cf 68ad1d6 4115d51 68ad1d6 94e5651 577ab1c 8ec8299 c2951c6 ac8d9e3 bc823ad f2b8b7c c2951c6 5bde136 d624c41 4b527a7 5636737 c4de53c 4b527a7 2cdfa88 68ad1d6 8ec8299 68ad1d6 7e6a2ad 68ad1d6 05fe1d3 68ad1d6 8b0b5c8 68ad1d6 8b0b5c8 68ad1d6 2fa321f 68ad1d6 94e5651 68ad1d6 2fa321f 68ad1d6 7d44ee0 68ad1d6 2fa321f 68ad1d6 2fa321f 68ad1d6 bc823ad 68ad1d6 903377a bc823ad 903377a 68ad1d6 903377a 68ad1d6 903377a 68ad1d6 8b0b5c8 3f7ce2f 4b527a7 c6e84e1 4b527a7 c6e84e1 4b527a7 8b0b5c8 2fa321f 8b0b5c8 577ab1c 2fa321f 3f7ce2f 5842855 2fa321f 577ab1c 2fa321f 577ab1c bc823ad c2951c6 3f7ce2f c2951c6 bc823ad c2951c6 bc823ad c2951c6 7fb33fd bc823ad 7d44ee0 bc823ad 5bde136 3f7ce2f 7d44ee0 5bde136 c4de53c 5bde136 c4de53c 5bde136 5636737 c4de53c 5bde136 7d44ee0 5bde136 3f7ce2f 5bde136 c4de53c 5bde136 c4de53c 5bde136 5636737 c4de53c 5bde136 3f7ce2f 7d44ee0 903377a 7d44ee0 c4de53c 7d44ee0 9a42d26 7d44ee0 4115d51 7d44ee0 8b0b5c8 0eb13c3 c187e7a 873355a 7fb33fd 873355a 0eb13c3 8b0b5c8 5bde136 7d44ee0 3f7ce2f 7d44ee0 3f7ce2f 50e765d c46d625 7d44ee0 c46d625 7d44ee0 c15f45f 7d44ee0 c46d625 c187e7a 7d44ee0 c187e7a 08fc9b9 8b0b5c8 c187e7a bc823ad c187e7a 7d44ee0 c187e7a bc2ed50 c187e7a bc823ad 7d44ee0 8b0b5c8 bc2ed50 c187e7a 8b0b5c8 7d44ee0 8b0b5c8 bc2ed50 c187e7a 08fc9b9 8b0b5c8 c187e7a bc823ad 7d44ee0 c187e7a 08fc9b9 bc2ed50 c187e7a 7d44ee0 c187e7a bc2ed50 c187e7a 8b0b5c8 7d44ee0 08fc9b9 bc2ed50 c187e7a 08fc9b9 2fa321f 7d44ee0 c187e7a 7d44ee0 c187e7a 7d44ee0 c187e7a 7d44ee0 08fc9b9 c187e7a 08fc9b9 bc823ad 8b0b5c8 c187e7a bc823ad c187e7a bc823ad c187e7a d624c41 c187e7a 8b0b5c8 2fa321f f7ef7d7 c187e7a 577ab1c 2fa321f c187e7a 577ab1c 2fa321f c187e7a 577ab1c 8b0b5c8 c187e7a 8b0b5c8 c187e7a 2fa321f 8b0b5c8 d624c41 8b0b5c8 2fa321f f7ef7d7 8b0b5c8 2fa321f 8b0b5c8 2fa321f c187e7a 2fa321f 8b0b5c8 2ea45d7 8b0b5c8 2fa321f 8b0b5c8 577ab1c 8b0b5c8 2fa321f c187e7a 8b0b5c8 c187e7a ce79560 8b0b5c8 555657c ce79560 8b0b5c8 d624c41 8b0b5c8 7d44ee0 50e765d adc5924 7d44ee0 50e765d d624c41 50e765d 7d44ee0 50e765d adc5924 50e765d d624c41 50e765d 4115d51 903377a 4115d51 c4de53c 4115d51 9a42d26 4115d51 d624c41 4115d51 8b0b5c8 bc823ad 8b0b5c8 577ab1c 8b0b5c8 479640b 8b0b5c8 2fa321f 8b0b5c8 2ea45d7 2fa321f 8b0b5c8 577ab1c 8b0b5c8 2fa321f 8b0b5c8 68ad1d6 bc823ad 0eb13c3 bc823ad c2951c6 bc823ad c2951c6 bc823ad 5bde136 c4de53c 5bde136 7d44ee0 5bde136 c4de53c 5bde136 c4de53c 5636737 5bde136 c4de53c 5bde136 c4de53c 5bde136 c4de53c 5636737 5bde136 3f7ce2f 50e765d 3f7ce2f 7d44ee0 3f7ce2f 7d44ee0 4115d51 7d44ee0 3f7ce2f bc823ad 4115d51 2ea45d7 c8ff24e 2ea45d7 c8ff24e 2ea45d7 bc823ad 2ea45d7 8ec8299 68ad1d6 7e6a2ad 68ad1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 |
library(shiny)
library(shinydashboard)
library(shinydashboardPlus)
library(shinyWidgets)
library(shinycssloaders)
library(DT)
library(plotly)
library(scico)
library(ggthemes)
library(scales)
library(stringr)
library(wesanderson)
library(data.table)
library(dtplyr)
library(parallel)
library(googlesheets4)
# devtools::install_github("woobe/Rnumerai")
library(Rnumerai)
# Options
options(encoding = "UTF-8")
# Pre-download all usernames
options(timeout = max(1000, getOption("timeout")))
ls_username <- sort(get_leaderboard()$username)
# Prepare survey results data
if (TRUE) {
# Download
gs4_deauth()
d_survey_raw <- read_sheet(ss = "https://docs.google.com/spreadsheets/d/18AM4RkG5KiK3TlDGMx0z7X5Y5-eQE9kgLXM9ng_yXUk",
sheet = "Form responses 1") %>% data.table()
# Rename
colnames(d_survey_raw) <- c("timestamp", "country", "comments")
# Summarise
d_survey_summary <-
d_survey_raw %>%
lazy_dt() %>%
group_by(country) %>%
summarise(count = n()) %>%
arrange(desc(count), country) %>%
as.data.table()
}
# ==============================================================================
# Helper Functions
# ==============================================================================
# Download raw data
download_raw_data <- function(model_name) {
# Download data from Numerai
d_raw <- round_model_performances(model_name)
# Remove rows without CORR
d_raw <- d_raw[!is.na(d_raw$corrWMetamodel), ]
# Add the model name
d_raw$model <- model_name
# Return
return(as.data.table(d_raw))
}
# Reformat
reformat_data <- function(d_raw) {
# Keep some columns only
col_keep <- c("model", "roundNumber",
"roundOpenTime", "roundResolveTime",
"roundResolved", "selectedStakeValue",
"corr20V2", "corr20V2Percentile",
"fncV3", "fncV3Percentile",
"tc", "tcPercentile",
"mmc", "mmcPercentile",
"corrWMetamodel",
"apcwnm", "mcwnm",
"roundPayoutFactor", "payout")
d_munged <- d_raw[, col_keep, with = FALSE]
# Date
d_munged[, roundOpenTime := as.Date(roundOpenTime)]
d_munged[, roundResolveTime := as.Date(roundResolveTime)]
# Reformat percentile
d_munged[, corr20V2Percentile := round(corr20V2Percentile * 100, 6)]
d_munged[, fncV3Percentile := round(fncV3Percentile * 100, 6)]
d_munged[, tcPercentile := round(tcPercentile * 100, 6)]
d_munged[, mmcPercentile := round(mmcPercentile * 100, 6)]
# Rename columns
colnames(d_munged) <- c("model", "round",
"date_open", "date_resolved",
"resolved", "stake",
"corrV2", "corrV2_pct",
"fncV3", "fncV3_pct",
"tc", "tc_pct",
"mmc", "mmc_pct",
"corr_meta",
"apcwnm", "mcwnm",
"pay_ftr", "payout")
# Return
return(d_munged)
}
# Generate Colour Palette
gen_custom_palette <- function(ls_model) {
# Extract info
n_limit <- 5
n_coluor <- length(unique(ls_model))
n_pal_rep <- ceiling(n_coluor / n_limit)
wes_pal_themes <- rep(c("Cavalcanti1", "Darjeeling1"), n_pal_rep)
# Generate
custom_palette <- c()
for (n_pal in 1:n_pal_rep) {
tmp_pal_name <- wes_pal_themes[n_pal]
tmp_pal <- wesanderson::wes_palette(name = tmp_pal_name, n = n_limit, type = "continuous")
custom_palette <- c(custom_palette, tmp_pal)
}
# Trim and return
return(custom_palette[1:n_coluor])
}
# ==============================================================================
# UI
# ==============================================================================
ui <- shinydashboardPlus::dashboardPage(
title = "Shiny Numerati",
skin = "black-light",
options = list(sidebarExpandOnHover = TRUE),
header = shinydashboardPlus::dashboardHeader(
title = "✨ Shiny Numerati",
userOutput("user")
),
# ============================================================================
# Sidebar
# ============================================================================
sidebar = shinydashboardPlus::dashboardSidebar(
id = "sidebar",
sidebarMenu(
menuItem(text = "Start Here", tabName = "start", icon = icon("play")),
menuItem(text = "Performance Summary", tabName = "performance", icon = icon("line-chart")), # icon("credit-card")
menuItem(text = "Raw Data", tabName = "raw_data", icon = icon("download")),
menuItem(text = "Community Events", tabName = "community", icon = icon("users")),
menuItem(text = "About", tabName = "about", icon = icon("question-circle"))
),
minified = TRUE,
collapsed = FALSE
),
# ============================================================================
# Main Body
# ============================================================================
body = dashboardBody(
tabItems(
# ========================================================================
# Start Here
# ========================================================================
tabItem(tabName = "start",
fluidPage(
# ==============================================================
# Special script to keep the session alive for a bit longer
# ==============================================================
tags$head(
HTML(
"
<script>
var socket_timeout_interval
var n = 0
$(document).on('shiny:connected', function(event) {
socket_timeout_interval = setInterval(function(){
Shiny.onInputChange('count', n++)
}, 10000)
});
$(document).on('shiny:disconnected', function(event) {
clearInterval(socket_timeout_interval)
});
</script>
"
)
),
# ==============================================================
# First Page
# ==============================================================
markdown("# **Shiny Numerati**"),
markdown("### Community Dashboard for the Numerai Classic Tournament"),
br(),
fluidRow(
column(6,
markdown("## **Step 1: Select Your Models**"),
markdown("### First, click this ⬇"),
pickerInput(inputId = "model",
label = " ",
choices = ls_username, # Replace this with your own models if needed
multiple = TRUE,
width = "100%",
options = list(
`title` = "---------->>> HERE <<<----------",
`header` = "Notes: 1) Use the search box below to find and select your models. 2) Use 'Select All' for quick selection.",
size = 20,
`actions-box` = TRUE,
`live-search` = TRUE,
`live-search-placeholder` = "For example: V43_LGBM_CYRUS20",
`virtual-scroll` = TRUE,
`multiple-separator` = ", ",
`selected-text-format`= "count > 3",
`count-selected-text` = "{0} models selected (out of {1})",
`deselect-all-text` = "Deselect All",
`select-all-text` = "Select All"
)
)
),
column(6,
markdown("## **Step 2: Download Data**"),
markdown("### Next, click this ⬇ (it may take a while)"),
br(),
actionBttn(inputId = "button_download",
label = "Download Data from Numerai",
color = "primary",
icon = icon("cloud-download"),
style = "gradient",
block = TRUE
)
)
),
br(),
h3(strong(textOutput(outputId = "text_download"))),
verbatimTextOutput(outputId = "print_download"),
br(),
h3(strong(textOutput(outputId = "text_preview"))),
shinycssloaders::withSpinner(DTOutput("dt_model")),
br(),
h2(strong(textOutput(outputId = "text_next"))),
h3(textOutput(outputId = "text_note")),
br()
)
),
# ========================================================================
# Payout Summary
# ========================================================================
tabItem(tabName = "performance",
fluidPage(
markdown("# **Performance Summary**"),
markdown("### Remember to refresh the charts after making changes to model selection or settings below."),
markdown("### **NOTE**: the charts may take a while to render if you have selected a lot of models."),
br(),
fluidRow(
column(6,
markdown("## **Step 4: Adjust the Filter**"),
sliderInput(inputId = "range_round",
label = "Numerai Classic Tournament Rounds",
width = "100%",
step = 1,
min = 168, # first tournament round
max = Rnumerai::get_current_round(), # note: daily payouts from round 474
value = c(496, Rnumerai::get_current_round())
)
),
column(6,
markdown("## **Step 5: Generate Summary**"),
br(),
actionBttn(inputId = "button_filter",
label = "Generate / Refresh",
color = "primary",
icon = icon("refresh"),
style = "gradient",
block = TRUE)
)
), # end of fluidRow
br(),
tabsetPanel(type = "tabs",
# First Page - All KPIs
tabPanel("KPI (All)",
br(),
h3(strong(textOutput(outputId = "text_performance_chart"))),
h4(textOutput(outputId = "text_performance_chart_note")),
br(),
# Controls
fluidRow(
column(6,
markdown("#### **Pick ONE of the KPIs:**"),
pickerInput(
inputId = "kpi_choice",
choices = c("MMCv2: The Latest and the Greatest MMC",
"CORRv2: CORRelation with target cyrus_v4_20",
"TC: True Contribtuion to the hedge fund's returns",
"FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
# "CORJ60: CORRelation with target Jerome_v4_60", # add this later
"Percentile: MMCv2",
"Percentile: CORRv2",
"Percentile: TC",
"Percentile: FNCv3",
"CWMM: Correlation With the Meta Model",
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
"Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2",
"Score Multipliers: 0.5 x CORRv2",
"Score Multipliers: 1.5 x CORRv2",
"Score Multipliers: 2.0 x CORRv2",
"Score Multipliers: 2.0 x CORRv2 + 0.5 x TC",
"Score Multipliers: 2.0 x CORRv2 + 1.0 x TC",
"Payout",
"Rate of Return (%): Payout / Stake x 100"),
multiple = FALSE,
width = "95%")
),
column(2,
markdown("#### **Cumulative**"),
switchInput(
inputId = "kpi_cumulative",
onLabel = "Yes",
offLabel = "No",
value = TRUE)
),
column(2,
markdown("#### **Hide Pending**"),
switchInput(
inputId = "kpi_hide_pending",
onLabel = "Yes",
offLabel = "No",
value = FALSE)
),
column(2,
markdown("#### **Facet**"),
switchInput(
inputId = "kpi_facet",
onLabel = "Yes",
offLabel = "No",
value = FALSE)
)
),
h4(strong(textOutput(outputId = "text_performance_chart_data"))),
br(),
DTOutput("dt_kpi"),
br(),
br(),
h4(strong(textOutput(outputId = "text_performance_chart_title"))),
fluidRow(column(12, plotlyOutput("plot_kpi"))),
br()
),
# tabPanel("KPI (C&T)",
#
# br(),
#
# h3(strong(textOutput(outputId = "text_performance_models"))),
#
# h4(textOutput(outputId = "text_performance_models_note")),
#
# br(),
#
# fluidRow(
# column(width = 6, plotlyOutput("plot_performance_avg")),
# column(width = 6, plotlyOutput("plot_performance_sharpe"))
# ),
#
# br(),
# br(),
# br(),
#
# fluidRow(DTOutput("dt_performance_summary"),
#
# br(),
#
# markdown("#### **Notes**:
#
# - **avg_corrV2**: Average `CORRv2`
# - **sharpe_corrV2**: Sharpe Ratio of `CORRv2`
#
# - **avg_tc**: Average True Contribution (`TC`)
# - **sharpe_tc**: Sharpe Ratio of True Contribution (`TC`)
#
# - **avg_2C1T**: Average `2xCORRv2 + 1xTC`
# - **sharpe_2C1T**: Sharpe Ratio of `2xCORRv2 + 1xTC`
#
# "),
#
# br()
# ),
#
#
# br()
#
# ), # End of KPI (C&T)
tabPanel("Payout (Overview)",
br(),
h3(strong(textOutput(outputId = "text_payout_overview"))),
br(),
fluidRow(
class = "text-center",
valueBoxOutput("payout_n_round_resolved", width = 3),
valueBoxOutput("payout_resolved", width = 3),
valueBoxOutput("payout_average_resolved", width = 3),
valueBoxOutput("payout_avg_ror_resolved", width = 3),
valueBoxOutput("payout_n_round_pending", width = 3),
valueBoxOutput("payout_pending", width = 3),
valueBoxOutput("payout_average_pending", width = 3),
valueBoxOutput("payout_avg_ror_pending", width = 3),
valueBoxOutput("payout_n_round", width = 3),
valueBoxOutput("payout_total", width = 3),
valueBoxOutput("payout_average", width = 3),
valueBoxOutput("payout_avg_ror", width = 3)
),
br(),
shinycssloaders::withSpinner(plotlyOutput("plot_payout_net")),
br()
),
tabPanel("Payout Table (Rounds)",
br(),
h3(strong(textOutput(outputId = "text_payout_rnd"))),
br(),
DTOutput("dt_payout_summary"),
br()
),
tabPanel("Payout Table (Models)",
br(),
h3(strong(textOutput(outputId = "text_payout_ind"))),
br(),
DTOutput("dt_model_payout_summary"),
br()
),
# tabPanel("Payout (Sim)",
#
# br(),
#
# h3(strong(textOutput(outputId = "text_payout_sim"))),
#
# br(),
#
# # markdown("![new_tc_change](https://i.ibb.co/XjKwtzr/screenshot-2023-10-05-at-10.png)"),
# markdown("![new_mmc](https://forum.numer.ai/uploads/default/optimized/2X/0/0b04785bd7167ff261f26325bc926c107398e26a_2_1035x729.jpeg)"),
#
#
# br(),
#
# markdown("#### **Notes**:
#
# - **sum_pay**: Sum of Payouts
# - **shp_pay**: Sharpe Ratio of Payouts
# - **1C3T**: 1xCORRv2 + 3xTC (Original Degen Mode)
# - **1C0T**: 1xCORRv2 + 0xTC (Until the End of 2023)
# - **2C0T**: 2xCORRv2 + 0xTC (Until the End of 2023)
# - **2C1T**: 2xCORRv2 + 1xTC (Until the End of 2023)
# - **05C2M**: 0.5xCORRv2 + 2xMMCv2 (**New Payout Mode**)
#
#
# "),
#
# br(),
#
# markdown("### **Payout Simulation (Overall)**"),
#
# DTOutput("dt_payout_sim_overall"),
#
# br(),
#
# br(),
#
# markdown("### **Payout Simulation (Individual Models)**"),
#
# br(),
#
# DTOutput("dt_payout_sim_model"),
#
# br()
#
# ), # End of Payout Sim
tabPanel("Payout Chart (Rounds)",
br(),
h3(strong(textOutput(outputId = "text_payout_all_models"))),
br(),
shinycssloaders::withSpinner(plotlyOutput("plot_payout_stacked")),
br()
),
tabPanel("Payout Chart (Models)",
br(),
h3(strong(textOutput(outputId = "text_payout_ind_models"))),
br(),
shinycssloaders::withSpinner(plotlyOutput("plot_payout_individual")),
br()
)
# tabPanel("KPI (x~y)",
#
# br(),
#
# markdown("![image](https://media.giphy.com/media/cftSzNoCTfSyAWctcl/giphy.gif)"),
#
# br(),
#
# fluidRow(
#
# column(6,
# markdown("#### **X-Axis:**"),
# pickerInput(
# inputId = "kpi_xy_x",
# choices = c("CORRv2: CORRelation with target cyrus_v4_20",
# "MMCv2: The Latest and the Greatest MMC",
# "TC: True Contribtuion to the hedge fund's returns",
# "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
# "Percentile: MMCv2",
# "Percentile: CORRv2",
# "Percentile: TC",
# "Percentile: FNCv3",
# "CWMM: Correlation With the Meta Model",
# "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
# "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR"),
#
# multiple = FALSE,
# width = "95%")
# ),
#
# column(6,
# markdown("#### **Y-Axis:**"),
# pickerInput(
# inputId = "kpi_xy_y",
# choices = c("MMCv2: The Latest and the Greatest MMC",
# "CORRv2: CORRelation with target cyrus_v4_20",
# "TC: True Contribtuion to the hedge fund's returns",
# "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
# "Percentile: MMCv2",
# "Percentile: CORRv2",
# "Percentile: TC",
# "Percentile: FNCv3",
# "CWMM: Correlation With the Meta Model",
# "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
# "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR"),
#
# multiple = FALSE,
# width = "95%")
# ),
#
# column(2,
# markdown("#### **Control 1**"),
# switchInput(
# inputId = "kpi_xy_ctrl_1",
# onLabel = "Yes",
# offLabel = "No",
# value = TRUE)
# ),
#
# column(2,
# markdown("#### **Control 2**"),
# switchInput(
# inputId = "kpi_xy_ctrl_2",
# onLabel = "Yes",
# offLabel = "No",
# value = FALSE)
# ),
#
# column(2,
# markdown("#### **Control 3**"),
# switchInput(
# inputId = "kpi_xy_ctrl_3",
# onLabel = "Yes",
# offLabel = "No",
# value = FALSE)
# ),
#
# column(2,
# markdown("#### **Control 4**"),
# switchInput(
# inputId = "kpi_xy_ctrl_4",
# onLabel = "Yes",
# offLabel = "No",
# value = FALSE)
# ),
#
# column(2,
# markdown("#### **Control 5**"),
# switchInput(
# inputId = "kpi_xy_ctrl_5",
# onLabel = "Yes",
# offLabel = "No",
# value = FALSE)
# ),
#
# column(2,
# markdown("#### **Control 6**"),
# switchInput(
# inputId = "kpi_xy_ctrl_6",
# onLabel = "Yes",
# offLabel = "No",
# value = FALSE)
# )
#
#
# ),
#
# br()
#
# ) # end of KPI (x~y)
) # end of tabsetPanel
) # end of fluidPage
),
# ========================================================================
# Raw Data
# ========================================================================
tabItem(tabName = "raw_data",
markdown("# **Download Raw Data**"),
markdown("### Wanna run your own analysis? No problem."),
markdown("### Remember to select your model(s) first."),
br(),
fluidRow(
column(6,
downloadBttn(outputId = "download_raw",
label = "Download Raw Data CSV",
icon = icon("cloud-download"),
style = "gradient",
block = T)
)
)
),
# ========================================================================
# Community
# ========================================================================
tabItem(tabName = "community",
fluidPage(
markdown("# **Numerai Coummunity**"),
br(),
tabsetPanel(type = "tabs",
# First Page - About
tabPanel("About",
markdown("## **Around the World with Numeratis**"),
markdown("### **Overview**
NumerCon (2022) and the time I spent with my fellow Numeratis were the exact “booster jab” I needed to wake the “meetup organizer Joe” up
after two crazy years of COVID and hibernation in a man cave. After NumerCon, I am confident that
1) many countries are now ready for in-person tech events and
2) we need to bring this fantastic in-person experience to more Numeratis around the world.
So, fam, here is my [proposal](https://forum.numer.ai/t/proposal-around-the-world-with-numeratis) for **Global Numerai Community Meetups**.
"),
markdown("### **Goals**
- **Demystifying Numerai** - many top data scientists out there are just not too sure about the crypto elements and/or the tournament format. Speaking with and listening to long-term participants can be an effective way to build trust. This was exactly how I learned to trust Numerai after watching Jon’s Office Hours with Arbitrage.
- **Knowledge sharing and brainstorming** - although we may not share all our secret sauce, meetups are great opportunities to bounce ideas off each other and may lead to new models with crazily high TC.
- **Face-to-face discussions between Numeratis and Numerai team** - a lot more than just asking the team “wen scores” in person, these events can provide a quick and direct feedback loop for both participants and the Numerai team.
"),
markdown("### **What's Here?**
- Materials (slides and videos) from previous events
- Survey results for upcoming events
- Memes and (de)GenAI stuff from the community
### **Enjoy :)**
")
),
# Second Page - Materials
tabPanel("Materials",
fluidRow(
column(10,
htmltools::includeMarkdown('https://raw.githubusercontent.com/councilofelders/meetups/master/README.md')
))
),
# Third Page - Survey Results
tabPanel("Survey Results",
markdown("## **Survey for Upcoming Events**"),
br(),
markdown("Hello everyone!
We’re reaching out to gather **anonymous data** on your location, which will greatly assist us in planning future Numerai community events.
Your support in providing this information would be much appreciated.
You can find the latest survey results below.
Here is the [**Google Form**](https://forms.gle/1USUa7YCn2EgZG3NA). Please share it with your fellow Numeratis.
Thank you!
"),
fluidRow(
column(4,
markdown("### **Summary**"),
br(),
DTOutput("dt_survey_summary")
),
column(8,
markdown("### **Raw Data**"),
br(),
DTOutput("dt_survey_raw"))
)
),
# 4th Page - Memes
tabPanel("Memes",
markdown("![image](https://media.giphy.com/media/cftSzNoCTfSyAWctcl/giphy.gif)")
)
) # end of tabsetPanel
) # end of fluidPage
),
# ========================================================================
# About
# ========================================================================
tabItem(tabName = "about",
markdown("# **About this App**"),
markdown('### Yet another Numerai community dashboard by <b><a href="https://linktr.ee/jofaichow" target="_blank">Jo-fai Chow</a></b>.'),
br(),
markdown("## **Acknowledgements**"),
markdown("- #### This hobby project was inspired by Rajiv's <b><a href='https://huggingface.co/spaces/rajistics/shiny-kmeans' target='_blank'>shiny-kmeans</a></b> on 🤗 Spaces."),
markdown('- #### The <b><a href="https://linktr.ee/jofaichow" target="_blank">Rnumerai</a></b> package from Omni Analytics Group.'),
br(),
markdown("## **Source Code**"),
markdown("- #### GitHub: https://github.com/woobe/shiny-numerati"),
markdown("- #### Hugging Face: https://huggingface.co/spaces/jofaichow/shiny-numerati/tree/main"),
br(),
markdown("## **Changelog**"),
markdown(
"
- #### **0.1.0** — First prototype with an interactive table output
- #### **0.1.1** — Added a functional `Payout Summary` page
- #### **0.1.2** — `Payout Summary` layout updates
- #### **0.1.3** — Added `Raw Data`
- #### **0.1.4** — Various improvements in `Payout Summary`
- #### **0.1.5** — Replaced `corrV1` with `corrV2`
- #### **0.1.6** — Added `apcwnm` and `mcwnm`
- #### **0.1.7** — Added CoE Meetup GitHub page to `Community`
- #### **0.1.8** — Various improvements in `Payout Summary`
- #### **0.1.9** — Added `Payout Sim` based on new Corr and TC multipier settings
- #### **0.2.0** — Replaced `Payout Summary` with `Performance Summary`. Added KPIs summary
- #### **0.2.1** — Added `KPI (All)`
- #### **0.2.2** — Sped up chart rendering with `toWebGL()`
- #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only
- #### **0.2.4** — Added `MMC` to `Payout Sim`
- #### **0.2.5** — Added more features related to MMC
- #### **0.2.6** — Added survey results - Ref: https://forum.numer.ai/t/around-the-world-with-numeratis-survey-for-upcoming-events
- #### **0.2.7** — Removed `KPI (C&T)` and `Payout Simulation`
"),
br(),
markdown("## **Session Info**"),
verbatimTextOutput(outputId = "session_info"),
br(),
textOutput("keepAlive") # trick to keep session alive
)
# ========================================================================
) # end of tabItems
),
footer = shinydashboardPlus::dashboardFooter(
left = "Powered by ❤️, ☕, Shiny, and 🤗 Spaces",
right = paste0("Version 0.2.7"))
)
# ==============================================================================
# Server
# ==============================================================================
server <- function(input, output) {
# About Joe
output$user <- renderUser({
dashboardUser(
name = "JC",
image = "https://numerai-public-images.s3.amazonaws.com/profile_images/aijoe_v5_compressed-iJWEo1WeHkpH.jpg",
subtitle = "@matlabulous",
footer = p('"THE NMR LIFE CHOSE ME."', class = 'text-center')
)
})
# ============================================================================
# Reactive: Data
# ============================================================================
react_ls_model <- eventReactive(input$button_download, {sort(input$model)})
react_d_raw <- eventReactive(
input$button_download,
{
# Parallelised download
d_raw <- rbindlist(mclapply(X = input$model,
FUN = download_raw_data,
mc.cores = detectCores()))
# Return
d_raw
}
)
output$dt_model <- DT::renderDT({
# Raw Data
d_raw <- react_d_raw()
# Reformat
d_munged <- reformat_data(d_raw)
# Main DT
DT::datatable(
# Data
d_munged,
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 10,
lengthMenu = c(10, 20, 100, 500, 1000, 50000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("corrV2", "tc", "fncV3", "corr_meta", "pay_ftr", "mmc"), digits = 4) |>
formatRound(columns = c("apcwnm", "mcwnm"), digits = 4) |>
formatRound(columns = c("corrV2_pct", "tc_pct", "fncV3_pct", "mmc_pct"), digits = 1) |>
formatRound(columns = c("stake", "payout"), digits = 2) |>
formatStyle(columns = c("model"),
fontWeight = "bold") |>
formatStyle(columns = c("stake"),
fontWeight = "bold",
color = styleInterval(cuts = -1e-15, values = c("#D24141", "#2196F3"))) |>
formatStyle(columns = c("corrV2", "fncV3", "mmc"),
color = styleInterval(cuts = -1e-15, values = c("#D24141", "black"))) |>
formatStyle(columns = c("tc"),
color = styleInterval(cuts = -1e-15, values = c("#D24141", "#A278DC"))) |>
formatStyle(columns = c("corrV2_pct", "tc_pct", "fncV3_pct", "mmc_pct"),
color = styleInterval(cuts = c(1, 5, 15, 85, 95, 99),
values = c("#692020", "#9A2F2F", "#D24141",
"#D1D1D1", # light grey
"#00A800", "#007000", "#003700"))) |>
formatStyle(columns = c("payout"),
fontWeight = "bold",
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800")))
})
# ============================================================================
# Static: Survey Data
# ============================================================================
output$dt_survey_summary <- DT::renderDT({
# Return
DT::datatable(
# Data
d_survey_summary,
# Other Options
rownames = FALSE,
# extensions = "Buttons",
options =
list(
dom = 'Blrtip', # https://datatables.net/reference/option/dom
pageLength = 20,
lengthMenu = c(10, 20, 100, 500)
)
)
})
output$dt_survey_raw <- DT::renderDT({
# Return
DT::datatable(
# Data
d_survey_raw,
# Other Options
rownames = FALSE,
# extensions = "Buttons",
options =
list(
dom = 'Blrtip', # https://datatables.net/reference/option/dom
pageLength = 20,
lengthMenu = c(10, 20, 100, 500)
)
)
})
# ============================================================================
# Reactive: Text Printout
# ============================================================================
output$print_download <- renderPrint({react_ls_model()})
output$text_download <- renderText({
if (length(react_ls_model()) >= 1) "Your Selection:" else " "
})
output$text_preview <- renderText({
if (length(react_ls_model()) >= 1) "Data Preview:" else " "
})
output$text_next <- renderText({
if (length(react_ls_model()) >= 1) "Step 3: Performance Summary (see ←)" else " "
})
output$text_note <- renderText({
if (length(react_ls_model()) >= 1) "Note: you can also download [Raw Data] and check out our [Community Events] (see ←)" else " "
})
# ============================================================================
# Reactive: filtering data for all charts
# ============================================================================
react_d_filter <- eventReactive(
input$button_filter,
{
# Reformat and Filter
d_filter <- reformat_data(react_d_raw())
d_filter <- d_filter[round >= input$range_round[1], ]
d_filter <- d_filter[round <= input$range_round[2], ]
# Return
d_filter
})
react_d_payout_summary <- eventReactive(
input$button_filter,
{
# Summarise payout
d_smry <-
react_d_filter() |>
lazy_dt() |>
filter(pay_ftr > 0) |>
filter(stake > 0) |>
group_by(round, date_open, date_resolved, resolved) |>
summarise(staked_models = n(),
total_stake = sum(stake, na.rm = T),
net_payout = sum(payout, na.rm = T)) |>
as.data.table()
d_smry$rate_of_return <- (d_smry$net_payout / d_smry$total_stake) * 100
# Return
d_smry
})
react_d_model_payout_summary <- eventReactive(
input$button_filter,
{
# Get filtered data
# d_smry <- as.data.table(react_d_filter() |> filter(pay_ftr > 0))
d_smry <-
react_d_filter() |>
lazy_dt() |>
filter(pay_ftr > 0) |>
filter(stake > 0) |>
as.data.table()
# Calculate rate of return (%)
d_smry[, rate_of_return_percent := payout / stake * 100]
# Summarise
d_smry <-
d_smry |>
lazy_dt() |>
group_by(model) |>
summarise(staked_rounds = n(),
net_payout = sum(payout, na.rm = T),
avg_payout = mean(payout, na.rm = T),
avg_rate_of_return_percent = mean(rate_of_return_percent, na.rm = T),
sharpe_rate_of_return = mean(rate_of_return_percent, na.rm = T) / sd(rate_of_return_percent, na.rm = T)
) |> as.data.table()
# Return
d_smry
})
react_d_payout_sim_model <- eventReactive(
input$button_filter,
{
# Get filtered data
# d_smry <- as.data.table(react_d_filter() |> filter(pay_ftr > 0))
d_payout <-
react_d_filter() |>
lazy_dt() |>
filter(pay_ftr > 0) |>
filter(stake > 0) |>
as.data.table()
# Apply clip to corrV2
d_payout[, corrV2_final := corrV2]
d_payout[corrV2 > 0.25, corrV2_final := 0.25]
d_payout[corrV2 < -0.25, corrV2_final := -0.25]
# Apply clip to tc
d_payout[, tc_final := tc]
d_payout[tc > 0.25, tc_final := 0.25]
d_payout[tc < -0.25, tc_final := -0.25]
# Calculate different payout
d_payout[, payout_1C0T := (corrV2_final) * stake * pay_ftr]
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
d_payout[, payout_05C2M := (0.5*corrV2_final + 2*mmc) * stake * pay_ftr]
# Summarise
d_payout_smry <-
d_payout |>
lazy_dt() |>
group_by(model) |>
summarise(
rounds = n(),
sum_pay_1C0T = sum(payout_1C0T, na.rm = T),
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
sum_pay_05C2M = sum(payout_05C2M, na.rm = T),
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
shp_pay_05C2M = mean(payout_05C2M, na.rm = T) / sd(payout_05C2M, na.rm = T)
) |>
as.data.table()
# Return
d_payout_smry
})
react_d_payout_sim_overall <- eventReactive(
input$button_filter,
{
# Get filtered data
# d_payout <- as.data.table(react_d_filter() |> filter(pay_ftr > 0))
d_payout <-
react_d_filter() |>
lazy_dt() |>
filter(pay_ftr > 0) |>
filter(stake > 0) |>
as.data.table()
# Apply clip to corrV2
d_payout[, corrV2_final := corrV2]
d_payout[corrV2 > 0.25, corrV2_final := 0.25]
d_payout[corrV2 < -0.25, corrV2_final := -0.25]
# Apply clip to tc
d_payout[, tc_final := tc]
d_payout[tc > 0.25, tc_final := 0.25]
d_payout[tc < -0.25, tc_final := -0.25]
# Calculate different payout
d_payout[, payout_1C0T := (corrV2_final) * stake * pay_ftr]
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
d_payout[, payout_05C2M := (0.5*corrV2 + 2*mmc) * stake * pay_ftr]
# Summarise
d_payout_smry <-
d_payout |>
lazy_dt() |>
summarise(
sum_pay_1C0T = sum(payout_1C0T, na.rm = T),
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
sum_pay_05C2M = sum(payout_05C2M, na.rm = T),
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
shp_pay_05C2M = mean(payout_05C2M, na.rm = T) / sd(payout_05C2M, na.rm = T)
) |>
as.data.table()
# Return
d_payout_smry
})
react_d_performance_summary <- eventReactive(
input$button_filter,
{
# Get filtered data
d_pref <- as.data.table(react_d_filter())
# Add 2xCORRv2 + 1xTC
d_pref[, twoC_oneT := 2*corrV2 + tc]
# Calculate some high level stats
d_pref <-
d_pref |>
lazy_dt() |>
group_by(model) |>
summarise(total_rounds = n(),
avg_corrV2 = mean(corrV2, na.rm = T),
sharpe_corrV2 = mean(corrV2, na.rm = T) / sd(corrV2, na.rm = T),
# mdd_corrV2 = maxdrawdown(corrV2),
avg_tc = mean(tc, na.rm = T),
sharpe_tc = mean(tc, na.rm = T) / sd(tc, na.rm = T),
# mdd_tc = maxdrawdown(tc),
avg_2C1T = mean(twoC_oneT, na.rm = T),
sharpe_2C1T = mean(twoC_oneT, na.rm = T) / sd(tc, na.rm = T)
# mdd_2C1T = maxdrawdown(twoC_oneT)
) |> as.data.table()
# Return
d_pref
})
react_d_kpi <- eventReactive(
input$button_filter,
{
# Get filtered data
d_pref <- as.data.table(react_d_filter())
# Hide Pending?
if (input$kpi_hide_pending) d_pref <- d_pref[resolved == TRUE]
# Add Rate of Return
d_pref[stake >0, rate_of_return := payout / stake * 100]
# Extract Raw KPI
if (input$kpi_choice == "MMCv2: The Latest and the Greatest MMC") d_pref[, KPI := mmc]
if (input$kpi_choice == "CORRv2: CORRelation with target cyrus_v4_20") d_pref[, KPI := corrV2]
if (input$kpi_choice == "TC: True Contribtuion to the hedge fund's returns") d_pref[, KPI := tc]
if (input$kpi_choice == "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features") d_pref[, KPI := fncV3]
if (input$kpi_choice == "CWMM: Correlation With the Meta Model") d_pref[, KPI := corr_meta]
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := mcwnm]
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
# Calculate Score Multiplies
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2") d_pref[, KPI := 0.5 * corrV2 + 2.0 * mmc]
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") d_pref[, KPI := 2.0 * corrV2 + 0.5 * tc]
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") d_pref[, KPI := 2.0 * corrV2 + 1.0 * tc]
# Extract Percentile
if (input$kpi_choice == "Percentile: MMCv2") d_pref[, KPI := mmc_pct]
if (input$kpi_choice == "Percentile: CORRv2") d_pref[, KPI := corrV2_pct]
if (input$kpi_choice == "Percentile: TC") d_pref[, KPI := tc_pct]
if (input$kpi_choice == "Percentile: FNCv3") d_pref[, KPI := fncV3_pct]
# Extract Payout info
if (input$kpi_choice == "Payout") d_pref[, KPI := payout]
if (input$kpi_choice == "Rate of Return (%): Payout / Stake x 100") d_pref[, KPI := rate_of_return]
# Remove rows with NA (quick hack for now)
d_pref <- d_pref[!is.na(KPI)]
# Calculate Cumulative KPI (if needed)
if (input$kpi_cumulative) {
# Sort before doing cumsum
setorderv(d_pref, c("model", "round"))
# The data.table way
d_pref[, KPI := cumsum(KPI), "model"]
}
# Trim and sort
d_trim <- d_pref[, c("model", "round", "date_resolved", "resolved", "KPI")]
setorderv(d_trim, c("model", "round"))
# Return
d_trim
})
# ============================================================================
# Reactive: Payout Value Boxes
# ============================================================================
output$text_payout_overview <- renderText({
if (nrow(react_d_filter()) >= 1) "Payout Summary (Overview)" else " "
})
output$text_payout_rnd <- renderText({
if (nrow(react_d_filter()) >= 1) "Payout Summary (Tournament Rounds)" else " "
})
output$text_payout_ind <- renderText({
if (nrow(react_d_filter()) >= 1) "Payout Summary (Individual Models)" else " "
})
output$text_payout_all_models <- renderText({
if (nrow(react_d_filter()) >= 1) "Payout Summary Chart (All Models - Stacked)" else " "
})
output$text_payout_ind_models <- renderText({
if (nrow(react_d_filter()) >= 1) "Payout Summary Chart (Individual Models)" else " "
})
output$text_payout_sim <- renderText({
if (nrow(react_d_filter()) >= 1) "New Payout Simulation (NOTE: Experimental!)" else " "
})
output$text_performance_models <- renderText({
if (nrow(react_d_filter()) >= 1) "KPI Analysis (CORRv2 and TC)" else " "
})
output$text_performance_models_note <- renderText({
if (nrow(react_d_filter()) >= 1) "NOTE: You may want to find out which models have high CORRv2 Sharpe and high TC Sharpe." else " "
})
output$text_performance_chart <- renderText({
if (nrow(react_d_filter()) >= 1) "KPI Analysis (Model Comparison)" else " "
})
output$text_performance_chart_note <- renderText({
if (nrow(react_d_filter()) >= 1) "NOTE: Remember to refresh the chart (Step 5 ↑) after making any changes." else " "
})
output$text_performance_chart_title <- renderText({
if (nrow(react_d_filter()) >= 1) "KPI Chart (Remember to Click the 'Refresh' Button ↑↑↑)" else " "
})
output$text_performance_chart_data <- renderText({
if (nrow(react_d_filter()) >= 1) "KPI Data" else " "
})
# ============================================================================
# Reactive valueBox outputs: Rounds
# ============================================================================
output$payout_n_round_resolved <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = nrow(react_d_payout_summary()[resolved == TRUE & total_stake > 0, ]),
subtitle = "Staked Rounds (Resolved)",
color = "olive")
})
output$payout_n_round_pending <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = nrow(react_d_payout_summary()[resolved == FALSE & total_stake > 0, ]),
subtitle = "Staked Rounds (Pending)",
color = "yellow")
})
output$payout_n_round <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = nrow(react_d_payout_summary()[total_stake > 0, ]),
subtitle = "Staked Rounds (All)",
color = "light-blue")
})
# ============================================================================
# Reactive valueBox outputs: Payouts
# ============================================================================
output$payout_resolved <- renderValueBox({
valueBox(value = paste(as.character(format(round(sum(react_d_filter()[resolved == T, ]$payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Total Payout (Resolved)",
color = "olive")
})
output$payout_pending <- renderValueBox({
valueBox(value = paste(as.character(format(round(sum(react_d_filter()[resolved == F, ]$payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Total Payout (Pending)",
color = "yellow")
})
output$payout_total <- renderValueBox({
valueBox(value = paste(as.character(format(round(sum(react_d_filter()$payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Total Payout (All)",
color = "light-blue")
})
# ============================================================================
# Reactive valueBox outputs: Average Round Payouts
# ============================================================================
output$payout_average_resolved <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[resolved == T & total_stake > 0, ]$net_payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Avg. Round Payout (Resolved)",
color = "olive")
})
output$payout_average_pending <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[resolved == F & total_stake > 0, ]$net_payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Avg. Round Payout (Pending)",
color = "yellow")
})
output$payout_average <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[total_stake > 0, ]$net_payout, na.rm = T), 2), nsmall = 2)), "NMR"),
subtitle = "Avg. Round Payout (All)",
color = "light-blue")
})
# ============================================================================
# Reactive valueBox outputs: Average Rate of Return
# ============================================================================
output$payout_avg_ror_resolved <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[resolved == T & total_stake > 0, ]$rate_of_return), 2), nsmall = 2)), "%"),
subtitle = "Avg. Round ROR (Resolved)",
color = "olive")
})
output$payout_avg_ror_pending <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[resolved == F & total_stake > 0, ]$rate_of_return), 2), nsmall = 2)), "%"),
subtitle = "Avg. Round ROR (Pending)",
color = "yellow")
})
output$payout_avg_ror <- renderValueBox({
# Use rounds with stake > 0 only
valueBox(value = paste(as.character(format(round(mean(react_d_payout_summary()[total_stake > 0, ]$rate_of_return), 2), nsmall = 2)), "%"),
subtitle = "Avg. Round ROR (All)",
color = "light-blue")
})
# ============================================================================
# Reactive: Payout Charts
# ============================================================================
# Net Payouts Bar Chart
output$plot_payout_net <- renderPlotly({
# Data
d_filter <- react_d_payout_summary()
# Filter
d_filter <- d_filter[total_stake > 0]
# Divider (resolved vs pending)
x_marker <- max(d_filter[resolved == TRUE]$round) + 0.5
y_marker <- max(d_filter$net_payout)
# ggplot
p <- ggplot(d_filter,
aes(x = round, y = net_payout, fill = net_payout,
text = paste("Round:", round,
"\nRound Open Date:", date_open,
"\nRound Resolved Date:", date_resolved,
"\nRound Resolved?:", resolved,
"\nPayout:", round(net_payout,2), "NMR"))) +
geom_bar(position = "stack", stat = "identity") +
theme(
panel.border = element_rect(fill = 'transparent',
color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent')
) +
geom_vline(aes(xintercept = x_marker), linewidth = 0.25, color = "grey", linetype = "dashed") +
geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey") +
annotate("text", x = x_marker, y = y_marker*1.2, label = "← Resolved vs. Pending →") +
scale_fill_scico(palette = "vikO", direction = -1, midpoint = 0) +
# scale_x_date(breaks = breaks_pretty(10),
# labels = label_date_short(format = c("%Y", "%b", "%d"), sep = "\n")
# ) +
xlab("\nTournament Round") +
ylab("Round Payout (NMR)")
# Generate plotly
ggplotly(p, height = 500, tooltip = "text") |> toWebGL()
})
# Stacked Bar Chart
output$plot_payout_stacked <- renderPlotly({
# Data
d_filter <- react_d_filter()
# Filter
d_filter <- d_filter[stake > 0]
# Divider (resolved vs pending)
x_marker <- max(d_filter[resolved == TRUE]$round) + 0.5
# ggplot
p <- ggplot(d_filter,
aes(x = round, y = payout, fill = payout,
text = paste("Model:", model,
"\nRound:", round,
"\nRound Open Date:", date_open,
"\nRound Resolved Date:", date_resolved,
"\nRound Resolved?:", resolved,
"\nPayout:", round(payout,2), "NMR"))) +
geom_bar(position = "stack", stat = "identity") +
theme(
panel.border = element_rect(fill = 'transparent',
color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent')
) +
geom_vline(aes(xintercept = x_marker), linewidth = 0.25, color = "grey", linetype = "dashed") +
geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey") +
scale_fill_scico(palette = "vikO", direction = -1, midpoint = 0) +
# scale_x_date(breaks = breaks_pretty(10),
# labels = label_date_short(format = c("%Y", "%b", "%d"), sep = "\n")
# ) +
xlab("\nTournament Round") +
ylab("Round Payout (NMR)")
# Generate plotly
ggplotly(p, height = 500, tooltip = "text") |> toWebGL()
})
# Individual
output$plot_payout_individual <- renderPlotly({
# Data
d_filter <- react_d_filter()
# Filter
d_filter <- d_filter[stake > 0]
# Get the number of unique models
n_model <- length(unique(d_filter$model))
# Base plot
p <- ggplot(d_filter,
aes(x = round, y = payout, fill = payout,
text = paste("Model:", model,
"\nRound:", round,
"\nRound Open Date:", date_open,
"\nRound Resolved Date:", date_resolved,
"\nRound Resolved:", resolved,
"\nPayout:", round(payout,2), "NMR"))) +
geom_bar(stat = "identity") +
theme(
panel.border = element_rect(fill = 'transparent', color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent'),
axis.text.x = element_text(angle = 45, hjust = 1)
) +
geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey") +
scale_fill_scico(palette = "vikO", direction = -1, midpoint = 0) +
scale_x_continuous(breaks = breaks_pretty(5)) +
xlab("\nTournament Round") +
ylab("Payout (NMR)")
# Facet setting
# if ((n_model %% 4) == 0) {
# p <- p + facet_wrap(. ~ model, ncol = 4, scales = "fixed")
# } else if ((n_model %% 5) == 0) {
# p <- p + facet_wrap(. ~ model, ncol = 5, scales = "fixed")
# } else {
# p <- p + facet_wrap(. ~ model, ncol = 6, scales = "fixed")
# }
p <- p + facet_wrap(. ~ model, ncol = 5, scales = "fixed") # fixed
# Dynamic height adjustment
height <- 500 # default minimum height
if (n_model >= 10) height = 800
if (n_model >= 15) height = 1000
if (n_model >= 20) height = 1200
if (n_model >= 25) height = 1400
if (n_model >= 30) height = 1600
if (n_model >= 35) height = 1800
if (n_model >= 40) height = 2000
if (n_model >= 45) height = 2200
if (n_model >= 50) height = 2400
if (n_model >= 55) height = 2600
if (n_model >= 60) height = 2800
if (n_model >= 65) height = 3000
# Generate plotly
ggplotly(p, height = height, tooltip = "text") |> toWebGL()
})
# KPI Chart: Avg Corr vs. Avg TC
output$plot_performance_avg <- renderPlotly({
# Data
d_pref <- react_d_performance_summary()
# Plot
p_avg <- ggplot(d_pref,
aes(x = avg_tc, y = avg_corrV2,
text = paste("Model:", model,
"\nAverage CORRv2:", round(avg_corrV2, 4),
"\nAverage TC:", round(avg_tc, 4))
)) +
geom_point() +
theme(
panel.border = element_rect(fill = 'transparent', color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent'),
axis.text.x = element_text(angle = 45, hjust = 1)
) +
scale_x_continuous(breaks = breaks_pretty(5)) +
scale_y_continuous(breaks = breaks_pretty(5)) +
xlab("\nAverage TC") +
ylab("\nAverage CORRv2")
# Add vline and hline if needed
if (min(d_pref$avg_corrV2) <0) p_avg <- p_avg + geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey", linetype = "dashed")
if (min(d_pref$avg_tc) <0) p_avg <- p_avg + geom_vline(aes(xintercept = 0), linewidth = 0.25, color = "grey", linetype = "dashed")
# Convert to Plotly
ggplotly(p_avg, tooltip = "text") |> toWebGL()
})
# KPI Chart: Corr Sharpe vs. TC Sharpe
output$plot_performance_sharpe <- renderPlotly({
# Data
d_pref <- react_d_performance_summary()
# Plot
p_sharpe <- ggplot(d_pref,
aes(x = sharpe_tc, y = sharpe_corrV2,
text = paste("Model:", model,
"\nSharpe Ratio of CORRv2:", round(sharpe_corrV2, 4),
"\nSharpe Ratio of TC:", round(sharpe_tc, 4))
)) +
geom_point() +
theme(
panel.border = element_rect(fill = 'transparent', color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent'),
axis.text.x = element_text(angle = 45, hjust = 1)
) +
scale_x_continuous(breaks = breaks_pretty(5)) +
scale_y_continuous(breaks = breaks_pretty(5)) +
xlab("\nSharpe Ratio of TC") +
ylab("\nSharpe Ratio of CORRv2")
# Add vline and hline if needed
if (min(d_pref$sharpe_corrV2) <0) p_sharpe <- p_sharpe + geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey", linetype = "dashed")
if (min(d_pref$sharpe_tc) <0) p_sharpe <- p_sharpe + geom_vline(aes(xintercept = 0), linewidth = 0.25, color = "grey", linetype = "dashed")
# Convert to Plotly
ggplotly(p_sharpe, tooltip = "text") |> toWebGL()
})
# KPI Chart: All KPIs
output$plot_kpi <- renderPlotly({
# Data
d_kpi <- react_d_kpi()
# Dynamic Labels
if (input$kpi_choice == "MMCv2: The Latest and the Greatest MMC") y_label <- "mmc"
if (input$kpi_choice == "CORRv2: CORRelation with target cyrus_v4_20") y_label <- "CORRv2"
if (input$kpi_choice == "TC: True Contribtuion to the hedge fund's returns") y_label <- "TC"
if (input$kpi_choice == "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features") y_label <- "FNCv3"
if (input$kpi_choice == "CWMM: Correlation With the Meta Model") y_label <- "CWMM"
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2") y_label <- "0.5 x CORRv2 + 2.0 x MMCv2"
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") y_label <- "2.0 x CORRv2 + 0.5 x TC"
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") y_label <- "2.0 x CORRv2 + 1.0 x TC"
if (input$kpi_choice == "Percentile: MMCv2") y_label <- "MMCv2 Percentile"
if (input$kpi_choice == "Percentile: CORRv2") y_label <- "CORRv2 Percentile"
if (input$kpi_choice == "Percentile: TC") y_label <- "TC Percentile"
if (input$kpi_choice == "Percentile: FNCv3") y_label <- "FNCv3 Percentile"
if (input$kpi_choice == "Payout") y_label <- "Payout (NMR)"
if (input$kpi_choice == "Rate of Return (%): Payout / Stake x 100") y_label <- "Rate of Return (%)"
# If cumulative
if (input$kpi_cumulative) y_label <- paste("Cumulative", y_label)
# Other settings
y_min <- min(d_kpi$KPI) * 0.95
if (y_min > 0) y_min <- 0
y_max <- max(d_kpi$KPI) * 1.05
height <- 500 # default minimum height
# Plot
p <- ggplot(d_kpi, aes(x = round, y = KPI,
ymin = y_min, ymax = y_max,
color = model)) +
geom_line() +
theme(
panel.border = element_rect(fill = 'transparent', color = "grey", linewidth = 0.25),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.background = element_rect(fill = 'transparent'),
legend.box.background = element_rect(fill = 'transparent'),
axis.text.x = element_text(angle = 45, hjust = 1)
) +
scale_x_continuous(breaks = breaks_pretty(5)) +
scale_y_continuous(breaks = breaks_pretty(5)) +
geom_hline(aes(yintercept = 0), linewidth = 0.25, color = "grey", linetype = "dashed") +
ylab(y_label) +
xlab("\nTournament Round")
# Facet wrap?
if (input$kpi_facet) {
# Extract no. of models
n_model <- length(unique(d_kpi$model))
# Add facet_wrap
p <- p + facet_wrap(. ~ model, ncol = 5, scales = "fixed") # fixed
# Dynamic height adjustment
if (n_model >= 10) height = 800
if (n_model >= 15) height = 1000
if (n_model >= 20) height = 1200
if (n_model >= 25) height = 1400
if (n_model >= 30) height = 1600
if (n_model >= 35) height = 1800
if (n_model >= 40) height = 2000
if (n_model >= 45) height = 2200
if (n_model >= 50) height = 2400
if (n_model >= 55) height = 2600
if (n_model >= 60) height = 2800
if (n_model >= 65) height = 3000
}
# Convert to Plotly
ggplotly(p, height = height) |> toWebGL()
})
# ============================================================================
# Reactive: Payout Summary Table
# ============================================================================
# Net Round Payout Summary
output$dt_payout_summary <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_payout_summary(),
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 1000,
lengthMenu = c(10, 50, 100, 500, 1000, 10000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("total_stake", "net_payout", "rate_of_return"), digits = 2) |>
formatStyle(columns = c("round"), fontWeight = "bold") |>
formatStyle(columns = c("resolved"),
target = "row",
backgroundColor = styleEqual(c(1,0), c("transparent", "#FFF8E1"))) |>
formatStyle(columns = c("total_stake"),
fontWeight = "bold",
color = styleInterval(cuts = -1e-15, values = c("#D24141", "#2196F3"))) |>
formatStyle(columns = c("net_payout"),
fontWeight = "bold",
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
formatStyle(columns = c("rate_of_return"),
fontWeight = "bold",
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800")))
})
# Individual Model Payout Summary
output$dt_model_payout_summary <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_model_payout_summary(),
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 100,
lengthMenu = c(10, 50, 100, 500, 1000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("net_payout", "avg_payout",
"avg_rate_of_return_percent",
"sharpe_rate_of_return"), digits = 4) |>
# formatStyle(columns = c("model"), fontWeight = "bold") |>
formatStyle(columns = c("net_payout", "avg_payout",
"avg_rate_of_return_percent",
"sharpe_rate_of_return"),
# fontWeight = "bold",
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800")))
})
# Payout Sim (Model)
output$dt_payout_sim_model <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_payout_sim_model(),
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 100,
lengthMenu = c(10, 50, 100, 500, 1000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
"sum_pay_05C2M", "shp_pay_05C2M",
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
digits = 2) |>
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
"sum_pay_05C2M", "shp_pay_05C2M",
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
formatStyle(columns = c("model",
"sum_pay_05C2M", "shp_pay_05C2M"
# "sum_pay_2C1T", "sum_pay_1C3T",
# "shp_pay_2C1T", "shp_pay_1C3T"
), fontWeight = "bold")
})
# Payout Sim (Overall)
output$dt_payout_sim_overall <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_payout_sim_overall(),
# Other Options
rownames = FALSE,
# extensions = "Buttons",
options =
list(
dom = 't', # https://datatables.net/reference/option/dom
# buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
# order = list(list(0, 'asc'), list(1, 'asc')),
# pageLength = 10,
# lengthMenu = c(10, 50, 100, 500, 1000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
"sum_pay_05C2M", "shp_pay_05C2M",
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
digits = 2) |>
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
"sum_pay_05C2M", "shp_pay_05C2M",
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
formatStyle(columns = c("sum_pay_05C2M", "shp_pay_05C2M"),
fontWeight = "bold")
})
# Performance Summary
output$dt_performance_summary <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_performance_summary(),
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 10,
lengthMenu = c(10, 50, 100, 500, 1000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("avg_corrV2", "sharpe_corrV2",
"avg_tc", "sharpe_tc",
"avg_2C1T", "sharpe_2C1T"
),
digits = 4) |>
formatStyle(columns = c("avg_corrV2", "sharpe_corrV2",
"avg_tc", "sharpe_tc",
"avg_2C1T", "sharpe_2C1T"
),
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800")))
})
# KPI Filter
output$dt_kpi <- DT::renderDT({
# Generate a new DT
DT::datatable(
# Data
react_d_kpi(),
# Other Options
rownames = FALSE,
extensions = "Buttons",
options =
list(
dom = 'Bflrtip', # https://datatables.net/reference/option/dom
buttons = list('csv', 'excel', 'copy', 'print'), # https://rstudio.github.io/DT/003-tabletools-buttons.html
order = list(list(0, 'asc'), list(1, 'asc')),
pageLength = 5,
lengthMenu = c(5, 10, 50, 100, 500, 1000),
columnDefs = list(list(className = 'dt-center', targets = "_all")))
) |>
# Reformat individual columns
formatRound(columns = c("KPI"), digits = 4) |>
formatStyle(columns = c("KPI"),
color = styleInterval(cuts = c(-1e-15, 1e-15),
values = c("#D24141", "#D1D1D1", "#00A800")))
})
# ============================================================================
# Reactive: Model Performance Charts
# ============================================================================
# Boxplot - TC Percentile
output$plot_boxplot_tcp <- renderPlotly({
# Data
d_filter <- react_d_filter()
# Order by TC_PCT
d_model_order <- with(d_filter, reorder(model, tc_pct, median))
d_filter$model_order <- factor(d_filter$model, levels = levels(d_model_order))
# ggplot2
p <- ggplot(d_filter, aes(x = model_order, y = tc_pct, group = model_order, color = model_order)) +
geom_boxplot() +
theme(
panel.border = element_blank(),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = 'transparent', color = NA),
panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(color = "grey", linewidth = 0.25),
panel.grid.minor = element_blank(),
strip.background = element_rect(fill = 'transparent'),
strip.text = element_text(),
strip.clip = "on",
legend.position = "none"
) +
scale_color_manual(values = gen_custom_palette(d_filter$model)) +
xlab("Model") +
ylab("TC Percentile") +
scale_y_continuous(limits = c(0,100), breaks = breaks_pretty(4)) +
coord_flip()
# Dynamic height adjustment
n_model <- length(unique(d_filter$model))
height <- 600 # default
if (n_model > 10) height = 800
if (n_model > 15) height = 1000
if (n_model > 20) height = 1200
if (n_model > 25) height = 1400
if (n_model > 30) height = 1600
if (n_model > 35) height = 1800
if (n_model > 40) height = 2000
if (n_model > 45) height = 2200
if (n_model > 50) height = 2400
# Generate plotly
ggplotly(p, height = height)
})
# ============================================================================
# Reactive: Downloads
# ============================================================================
output$download_raw <- downloadHandler(
filename = "raw_data.csv",
content = function(file) {fwrite(react_d_raw(), file, row.names = FALSE)}
)
# ============================================================================
# Session Info
# ============================================================================
output$session_info <- renderPrint({
sessionInfo()
})
# ============================================================================
# Trick to keep session alive
# https://tickets.dominodatalab.com/hc/en-us/articles/360015932932-Increasing-the-timeout-for-Shiny-Server
# ============================================================================
output$keepAlive <- renderText({
req(input$count)
# paste("keep alive ", input$count)
" "
})
}
# ==============================================================================
# App
# ==============================================================================
shinyApp(ui, server)
|