recipedia / src /build_vocab.py
johnsonhung
init
2a3a041
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import nltk
import pickle
import argparse
from collections import Counter
import json
import os
from tqdm import *
import numpy as np
import re
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word, idx=None):
if idx is None:
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
return self.idx
else:
if not word in self.word2idx:
self.word2idx[word] = idx
if idx in self.idx2word.keys():
self.idx2word[idx].append(word)
else:
self.idx2word[idx] = [word]
return idx
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<pad>']
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
def get_ingredient(det_ingr, replace_dict):
det_ingr_undrs = det_ingr['text'].lower()
det_ingr_undrs = ''.join(i for i in det_ingr_undrs if not i.isdigit())
for rep, char_list in replace_dict.items():
for c_ in char_list:
if c_ in det_ingr_undrs:
det_ingr_undrs = det_ingr_undrs.replace(c_, rep)
det_ingr_undrs = det_ingr_undrs.strip()
det_ingr_undrs = det_ingr_undrs.replace(' ', '_')
return det_ingr_undrs
def get_instruction(instruction, replace_dict, instruction_mode=True):
instruction = instruction.lower()
for rep, char_list in replace_dict.items():
for c_ in char_list:
if c_ in instruction:
instruction = instruction.replace(c_, rep)
instruction = instruction.strip()
# remove sentences starting with "1.", "2.", ... from the targets
if len(instruction) > 0 and instruction[0].isdigit() and instruction_mode:
instruction = ''
return instruction
def remove_plurals(counter_ingrs, ingr_clusters):
del_ingrs = []
for k, v in counter_ingrs.items():
if len(k) == 0:
del_ingrs.append(k)
continue
gotit = 0
if k[-2:] == 'es':
if k[:-2] in counter_ingrs.keys():
counter_ingrs[k[:-2]] += v
ingr_clusters[k[:-2]].extend(ingr_clusters[k])
del_ingrs.append(k)
gotit = 1
if k[-1] == 's' and gotit == 0:
if k[:-1] in counter_ingrs.keys():
counter_ingrs[k[:-1]] += v
ingr_clusters[k[:-1]].extend(ingr_clusters[k])
del_ingrs.append(k)
for item in del_ingrs:
del counter_ingrs[item]
del ingr_clusters[item]
return counter_ingrs, ingr_clusters
def cluster_ingredients(counter_ingrs):
mydict = dict()
mydict_ingrs = dict()
for k, v in counter_ingrs.items():
w1 = k.split('_')[-1]
w2 = k.split('_')[0]
lw = [w1, w2]
if len(k.split('_')) > 1:
w3 = k.split('_')[0] + '_' + k.split('_')[1]
w4 = k.split('_')[-2] + '_' + k.split('_')[-1]
lw = [w1, w2, w4, w3]
gotit = 0
for w in lw:
if w in counter_ingrs.keys():
# check if its parts are
parts = w.split('_')
if len(parts) > 0:
if parts[0] in counter_ingrs.keys():
w = parts[0]
elif parts[1] in counter_ingrs.keys():
w = parts[1]
if w in mydict.keys():
mydict[w] += v
mydict_ingrs[w].append(k)
else:
mydict[w] = v
mydict_ingrs[w] = [k]
gotit = 1
break
if gotit == 0:
mydict[k] = v
mydict_ingrs[k] = [k]
return mydict, mydict_ingrs
def update_counter(list_, counter_toks, istrain=False):
for sentence in list_:
tokens = nltk.tokenize.word_tokenize(sentence)
if istrain:
counter_toks.update(tokens)
def build_vocab_recipe1m(args):
print ("Loading data...")
dets = json.load(open(os.path.join(args.recipe1m_path, 'det_ingrs.json'), 'r'))
layer1 = json.load(open(os.path.join(args.recipe1m_path, 'layer1.json'), 'r'))
layer2 = json.load(open(os.path.join(args.recipe1m_path, 'layer2.json'), 'r'))
id2im = {}
for i, entry in enumerate(layer2):
id2im[entry['id']] = i
print("Loaded data.")
print("Found %d recipes in the dataset." % (len(layer1)))
replace_dict_ingrs = {'and': ['&', "'n"], '': ['%', ',', '.', '#', '[', ']', '!', '?']}
replace_dict_instrs = {'and': ['&', "'n"], '': ['#', '[', ']']}
idx2ind = {}
for i, entry in enumerate(dets):
idx2ind[entry['id']] = i
ingrs_file = args.save_path + 'allingrs_count.pkl'
instrs_file = args.save_path + 'allwords_count.pkl'
#####
# 1. Count words in dataset and clean
#####
if os.path.exists(ingrs_file) and os.path.exists(instrs_file) and not args.forcegen:
print ("loading pre-extracted word counters")
counter_ingrs = pickle.load(open(args.save_path + 'allingrs_count.pkl', 'rb'))
counter_toks = pickle.load(open(args.save_path + 'allwords_count.pkl', 'rb'))
else:
counter_toks = Counter()
counter_ingrs = Counter()
counter_ingrs_raw = Counter()
for i, entry in tqdm(enumerate(layer1)):
# get all instructions for this recipe
instrs = entry['instructions']
instrs_list = []
ingrs_list = []
# retrieve pre-detected ingredients for this entry
det_ingrs = dets[idx2ind[entry['id']]]['ingredients']
valid = dets[idx2ind[entry['id']]]['valid']
det_ingrs_filtered = []
for j, det_ingr in enumerate(det_ingrs):
if len(det_ingr) > 0 and valid[j]:
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs)
det_ingrs_filtered.append(det_ingr_undrs)
ingrs_list.append(det_ingr_undrs)
# get raw text for instructions of this entry
acc_len = 0
for instr in instrs:
instr = instr['text']
instr = get_instruction(instr, replace_dict_instrs)
if len(instr) > 0:
instrs_list.append(instr)
acc_len += len(instr)
# discard recipes with too few or too many ingredients or instruction words
if len(ingrs_list) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \
or len(instrs_list) >= args.maxnuminstrs or len(ingrs_list) >= args.maxnumingrs \
or acc_len < args.minnumwords:
continue
# tokenize sentences and update counter
update_counter(instrs_list, counter_toks, istrain=entry['partition'] == 'train')
title = nltk.tokenize.word_tokenize(entry['title'].lower())
if entry['partition'] == 'train':
counter_toks.update(title)
if entry['partition'] == 'train':
counter_ingrs.update(ingrs_list)
pickle.dump(counter_ingrs, open(args.save_path + 'allingrs_count.pkl', 'wb'))
pickle.dump(counter_toks, open(args.save_path + 'allwords_count.pkl', 'wb'))
pickle.dump(counter_ingrs_raw, open(args.save_path + 'allingrs_raw_count.pkl', 'wb'))
# manually add missing entries for better clustering
base_words = ['peppers', 'tomato', 'spinach_leaves', 'turkey_breast', 'lettuce_leaf',
'chicken_thighs', 'milk_powder', 'bread_crumbs', 'onion_flakes',
'red_pepper', 'pepper_flakes', 'juice_concentrate', 'cracker_crumbs', 'hot_chili',
'seasoning_mix', 'dill_weed', 'pepper_sauce', 'sprouts', 'cooking_spray', 'cheese_blend',
'basil_leaves', 'pineapple_chunks', 'marshmallow', 'chile_powder',
'cheese_blend', 'corn_kernels', 'tomato_sauce', 'chickens', 'cracker_crust',
'lemonade_concentrate', 'red_chili', 'mushroom_caps', 'mushroom_cap', 'breaded_chicken',
'frozen_pineapple', 'pineapple_chunks', 'seasoning_mix', 'seaweed', 'onion_flakes',
'bouillon_granules', 'lettuce_leaf', 'stuffing_mix', 'parsley_flakes', 'chicken_breast',
'basil_leaves', 'baguettes', 'green_tea', 'peanut_butter', 'green_onion', 'fresh_cilantro',
'breaded_chicken', 'hot_pepper', 'dried_lavender', 'white_chocolate',
'dill_weed', 'cake_mix', 'cheese_spread', 'turkey_breast', 'chucken_thighs', 'basil_leaves',
'mandarin_orange', 'laurel', 'cabbage_head', 'pistachio', 'cheese_dip',
'thyme_leave', 'boneless_pork', 'red_pepper', 'onion_dip', 'skinless_chicken', 'dark_chocolate',
'canned_corn', 'muffin', 'cracker_crust', 'bread_crumbs', 'frozen_broccoli',
'philadelphia', 'cracker_crust', 'chicken_breast']
for base_word in base_words:
if base_word not in counter_ingrs.keys():
counter_ingrs[base_word] = 1
counter_ingrs, cluster_ingrs = cluster_ingredients(counter_ingrs)
counter_ingrs, cluster_ingrs = remove_plurals(counter_ingrs, cluster_ingrs)
# If the word frequency is less than 'threshold', then the word is discarded.
words = [word for word, cnt in counter_toks.items() if cnt >= args.threshold_words]
ingrs = {word: cnt for word, cnt in counter_ingrs.items() if cnt >= args.threshold_ingrs}
# Recipe vocab
# Create a vocab wrapper and add some special tokens.
vocab_toks = Vocabulary()
vocab_toks.add_word('<start>')
vocab_toks.add_word('<end>')
vocab_toks.add_word('<eoi>')
# Add the words to the vocabulary.
for i, word in enumerate(words):
vocab_toks.add_word(word)
vocab_toks.add_word('<pad>')
# Ingredient vocab
# Create a vocab wrapper for ingredients
vocab_ingrs = Vocabulary()
idx = vocab_ingrs.add_word('<end>')
# this returns the next idx to add words to
# Add the ingredients to the vocabulary.
for k, _ in ingrs.items():
for ingr in cluster_ingrs[k]:
idx = vocab_ingrs.add_word(ingr, idx)
idx += 1
_ = vocab_ingrs.add_word('<pad>', idx)
print("Total ingr vocabulary size: {}".format(len(vocab_ingrs)))
print("Total token vocabulary size: {}".format(len(vocab_toks)))
dataset = {'train': [], 'val': [], 'test': []}
######
# 2. Tokenize and build dataset based on vocabularies.
######
for i, entry in tqdm(enumerate(layer1)):
# get all instructions for this recipe
instrs = entry['instructions']
instrs_list = []
ingrs_list = []
images_list = []
# retrieve pre-detected ingredients for this entry
det_ingrs = dets[idx2ind[entry['id']]]['ingredients']
valid = dets[idx2ind[entry['id']]]['valid']
labels = []
for j, det_ingr in enumerate(det_ingrs):
if len(det_ingr) > 0 and valid[j]:
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs)
ingrs_list.append(det_ingr_undrs)
label_idx = vocab_ingrs(det_ingr_undrs)
if label_idx is not vocab_ingrs('<pad>') and label_idx not in labels:
labels.append(label_idx)
# get raw text for instructions of this entry
acc_len = 0
for instr in instrs:
instr = instr['text']
instr = get_instruction(instr, replace_dict_instrs)
if len(instr) > 0:
acc_len += len(instr)
instrs_list.append(instr)
# we discard recipes with too many or too few ingredients or instruction words
if len(labels) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \
or len(instrs_list) >= args.maxnuminstrs or len(labels) >= args.maxnumingrs \
or acc_len < args.minnumwords:
continue
if entry['id'] in id2im.keys():
ims = layer2[id2im[entry['id']]]
# copy image paths for this recipe
for im in ims['images']:
images_list.append(im['id'])
# tokenize sentences
toks = []
for instr in instrs_list:
tokens = nltk.tokenize.word_tokenize(instr)
toks.append(tokens)
title = nltk.tokenize.word_tokenize(entry['title'].lower())
newentry = {'id': entry['id'], 'instructions': instrs_list, 'tokenized': toks,
'ingredients': ingrs_list, 'images': images_list, 'title': title}
dataset[entry['partition']].append(newentry)
print('Dataset size:')
for split in dataset.keys():
print(split, ':', len(dataset[split]))
return vocab_ingrs, vocab_toks, dataset
def main(args):
vocab_ingrs, vocab_toks, dataset = build_vocab_recipe1m(args)
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_ingrs.pkl'), 'wb') as f:
pickle.dump(vocab_ingrs, f)
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_toks.pkl'), 'wb') as f:
pickle.dump(vocab_toks, f)
for split in dataset.keys():
with open(os.path.join(args.save_path, args.suff+'recipe1m_' + split + '.pkl'), 'wb') as f:
pickle.dump(dataset[split], f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--recipe1m_path', type=str,
default='path/to/recipe1m',
help='recipe1m path')
parser.add_argument('--save_path', type=str, default='../data/',
help='path for saving vocabulary wrapper')
parser.add_argument('--suff', type=str, default='')
parser.add_argument('--threshold_ingrs', type=int, default=10,
help='minimum ingr count threshold')
parser.add_argument('--threshold_words', type=int, default=10,
help='minimum word count threshold')
parser.add_argument('--maxnuminstrs', type=int, default=20,
help='max number of instructions (sentences)')
parser.add_argument('--maxnumingrs', type=int, default=20,
help='max number of ingredients')
parser.add_argument('--minnuminstrs', type=int, default=2,
help='max number of instructions (sentences)')
parser.add_argument('--minnumingrs', type=int, default=2,
help='max number of ingredients')
parser.add_argument('--minnumwords', type=int, default=20,
help='minimum number of characters in recipe')
parser.add_argument('--forcegen', dest='forcegen', action='store_true')
parser.set_defaults(forcegen=False)
args = parser.parse_args()
main(args)