Spaces:
Configuration error
Configuration error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import nltk | |
import pickle | |
import argparse | |
from collections import Counter | |
import json | |
import os | |
from tqdm import * | |
import numpy as np | |
import re | |
class Vocabulary(object): | |
"""Simple vocabulary wrapper.""" | |
def __init__(self): | |
self.word2idx = {} | |
self.idx2word = {} | |
self.idx = 0 | |
def add_word(self, word, idx=None): | |
if idx is None: | |
if not word in self.word2idx: | |
self.word2idx[word] = self.idx | |
self.idx2word[self.idx] = word | |
self.idx += 1 | |
return self.idx | |
else: | |
if not word in self.word2idx: | |
self.word2idx[word] = idx | |
if idx in self.idx2word.keys(): | |
self.idx2word[idx].append(word) | |
else: | |
self.idx2word[idx] = [word] | |
return idx | |
def __call__(self, word): | |
if not word in self.word2idx: | |
return self.word2idx['<pad>'] | |
return self.word2idx[word] | |
def __len__(self): | |
return len(self.idx2word) | |
def get_ingredient(det_ingr, replace_dict): | |
det_ingr_undrs = det_ingr['text'].lower() | |
det_ingr_undrs = ''.join(i for i in det_ingr_undrs if not i.isdigit()) | |
for rep, char_list in replace_dict.items(): | |
for c_ in char_list: | |
if c_ in det_ingr_undrs: | |
det_ingr_undrs = det_ingr_undrs.replace(c_, rep) | |
det_ingr_undrs = det_ingr_undrs.strip() | |
det_ingr_undrs = det_ingr_undrs.replace(' ', '_') | |
return det_ingr_undrs | |
def get_instruction(instruction, replace_dict, instruction_mode=True): | |
instruction = instruction.lower() | |
for rep, char_list in replace_dict.items(): | |
for c_ in char_list: | |
if c_ in instruction: | |
instruction = instruction.replace(c_, rep) | |
instruction = instruction.strip() | |
# remove sentences starting with "1.", "2.", ... from the targets | |
if len(instruction) > 0 and instruction[0].isdigit() and instruction_mode: | |
instruction = '' | |
return instruction | |
def remove_plurals(counter_ingrs, ingr_clusters): | |
del_ingrs = [] | |
for k, v in counter_ingrs.items(): | |
if len(k) == 0: | |
del_ingrs.append(k) | |
continue | |
gotit = 0 | |
if k[-2:] == 'es': | |
if k[:-2] in counter_ingrs.keys(): | |
counter_ingrs[k[:-2]] += v | |
ingr_clusters[k[:-2]].extend(ingr_clusters[k]) | |
del_ingrs.append(k) | |
gotit = 1 | |
if k[-1] == 's' and gotit == 0: | |
if k[:-1] in counter_ingrs.keys(): | |
counter_ingrs[k[:-1]] += v | |
ingr_clusters[k[:-1]].extend(ingr_clusters[k]) | |
del_ingrs.append(k) | |
for item in del_ingrs: | |
del counter_ingrs[item] | |
del ingr_clusters[item] | |
return counter_ingrs, ingr_clusters | |
def cluster_ingredients(counter_ingrs): | |
mydict = dict() | |
mydict_ingrs = dict() | |
for k, v in counter_ingrs.items(): | |
w1 = k.split('_')[-1] | |
w2 = k.split('_')[0] | |
lw = [w1, w2] | |
if len(k.split('_')) > 1: | |
w3 = k.split('_')[0] + '_' + k.split('_')[1] | |
w4 = k.split('_')[-2] + '_' + k.split('_')[-1] | |
lw = [w1, w2, w4, w3] | |
gotit = 0 | |
for w in lw: | |
if w in counter_ingrs.keys(): | |
# check if its parts are | |
parts = w.split('_') | |
if len(parts) > 0: | |
if parts[0] in counter_ingrs.keys(): | |
w = parts[0] | |
elif parts[1] in counter_ingrs.keys(): | |
w = parts[1] | |
if w in mydict.keys(): | |
mydict[w] += v | |
mydict_ingrs[w].append(k) | |
else: | |
mydict[w] = v | |
mydict_ingrs[w] = [k] | |
gotit = 1 | |
break | |
if gotit == 0: | |
mydict[k] = v | |
mydict_ingrs[k] = [k] | |
return mydict, mydict_ingrs | |
def update_counter(list_, counter_toks, istrain=False): | |
for sentence in list_: | |
tokens = nltk.tokenize.word_tokenize(sentence) | |
if istrain: | |
counter_toks.update(tokens) | |
def build_vocab_recipe1m(args): | |
print ("Loading data...") | |
dets = json.load(open(os.path.join(args.recipe1m_path, 'det_ingrs.json'), 'r')) | |
layer1 = json.load(open(os.path.join(args.recipe1m_path, 'layer1.json'), 'r')) | |
layer2 = json.load(open(os.path.join(args.recipe1m_path, 'layer2.json'), 'r')) | |
id2im = {} | |
for i, entry in enumerate(layer2): | |
id2im[entry['id']] = i | |
print("Loaded data.") | |
print("Found %d recipes in the dataset." % (len(layer1))) | |
replace_dict_ingrs = {'and': ['&', "'n"], '': ['%', ',', '.', '#', '[', ']', '!', '?']} | |
replace_dict_instrs = {'and': ['&', "'n"], '': ['#', '[', ']']} | |
idx2ind = {} | |
for i, entry in enumerate(dets): | |
idx2ind[entry['id']] = i | |
ingrs_file = args.save_path + 'allingrs_count.pkl' | |
instrs_file = args.save_path + 'allwords_count.pkl' | |
##### | |
# 1. Count words in dataset and clean | |
##### | |
if os.path.exists(ingrs_file) and os.path.exists(instrs_file) and not args.forcegen: | |
print ("loading pre-extracted word counters") | |
counter_ingrs = pickle.load(open(args.save_path + 'allingrs_count.pkl', 'rb')) | |
counter_toks = pickle.load(open(args.save_path + 'allwords_count.pkl', 'rb')) | |
else: | |
counter_toks = Counter() | |
counter_ingrs = Counter() | |
counter_ingrs_raw = Counter() | |
for i, entry in tqdm(enumerate(layer1)): | |
# get all instructions for this recipe | |
instrs = entry['instructions'] | |
instrs_list = [] | |
ingrs_list = [] | |
# retrieve pre-detected ingredients for this entry | |
det_ingrs = dets[idx2ind[entry['id']]]['ingredients'] | |
valid = dets[idx2ind[entry['id']]]['valid'] | |
det_ingrs_filtered = [] | |
for j, det_ingr in enumerate(det_ingrs): | |
if len(det_ingr) > 0 and valid[j]: | |
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs) | |
det_ingrs_filtered.append(det_ingr_undrs) | |
ingrs_list.append(det_ingr_undrs) | |
# get raw text for instructions of this entry | |
acc_len = 0 | |
for instr in instrs: | |
instr = instr['text'] | |
instr = get_instruction(instr, replace_dict_instrs) | |
if len(instr) > 0: | |
instrs_list.append(instr) | |
acc_len += len(instr) | |
# discard recipes with too few or too many ingredients or instruction words | |
if len(ingrs_list) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \ | |
or len(instrs_list) >= args.maxnuminstrs or len(ingrs_list) >= args.maxnumingrs \ | |
or acc_len < args.minnumwords: | |
continue | |
# tokenize sentences and update counter | |
update_counter(instrs_list, counter_toks, istrain=entry['partition'] == 'train') | |
title = nltk.tokenize.word_tokenize(entry['title'].lower()) | |
if entry['partition'] == 'train': | |
counter_toks.update(title) | |
if entry['partition'] == 'train': | |
counter_ingrs.update(ingrs_list) | |
pickle.dump(counter_ingrs, open(args.save_path + 'allingrs_count.pkl', 'wb')) | |
pickle.dump(counter_toks, open(args.save_path + 'allwords_count.pkl', 'wb')) | |
pickle.dump(counter_ingrs_raw, open(args.save_path + 'allingrs_raw_count.pkl', 'wb')) | |
# manually add missing entries for better clustering | |
base_words = ['peppers', 'tomato', 'spinach_leaves', 'turkey_breast', 'lettuce_leaf', | |
'chicken_thighs', 'milk_powder', 'bread_crumbs', 'onion_flakes', | |
'red_pepper', 'pepper_flakes', 'juice_concentrate', 'cracker_crumbs', 'hot_chili', | |
'seasoning_mix', 'dill_weed', 'pepper_sauce', 'sprouts', 'cooking_spray', 'cheese_blend', | |
'basil_leaves', 'pineapple_chunks', 'marshmallow', 'chile_powder', | |
'cheese_blend', 'corn_kernels', 'tomato_sauce', 'chickens', 'cracker_crust', | |
'lemonade_concentrate', 'red_chili', 'mushroom_caps', 'mushroom_cap', 'breaded_chicken', | |
'frozen_pineapple', 'pineapple_chunks', 'seasoning_mix', 'seaweed', 'onion_flakes', | |
'bouillon_granules', 'lettuce_leaf', 'stuffing_mix', 'parsley_flakes', 'chicken_breast', | |
'basil_leaves', 'baguettes', 'green_tea', 'peanut_butter', 'green_onion', 'fresh_cilantro', | |
'breaded_chicken', 'hot_pepper', 'dried_lavender', 'white_chocolate', | |
'dill_weed', 'cake_mix', 'cheese_spread', 'turkey_breast', 'chucken_thighs', 'basil_leaves', | |
'mandarin_orange', 'laurel', 'cabbage_head', 'pistachio', 'cheese_dip', | |
'thyme_leave', 'boneless_pork', 'red_pepper', 'onion_dip', 'skinless_chicken', 'dark_chocolate', | |
'canned_corn', 'muffin', 'cracker_crust', 'bread_crumbs', 'frozen_broccoli', | |
'philadelphia', 'cracker_crust', 'chicken_breast'] | |
for base_word in base_words: | |
if base_word not in counter_ingrs.keys(): | |
counter_ingrs[base_word] = 1 | |
counter_ingrs, cluster_ingrs = cluster_ingredients(counter_ingrs) | |
counter_ingrs, cluster_ingrs = remove_plurals(counter_ingrs, cluster_ingrs) | |
# If the word frequency is less than 'threshold', then the word is discarded. | |
words = [word for word, cnt in counter_toks.items() if cnt >= args.threshold_words] | |
ingrs = {word: cnt for word, cnt in counter_ingrs.items() if cnt >= args.threshold_ingrs} | |
# Recipe vocab | |
# Create a vocab wrapper and add some special tokens. | |
vocab_toks = Vocabulary() | |
vocab_toks.add_word('<start>') | |
vocab_toks.add_word('<end>') | |
vocab_toks.add_word('<eoi>') | |
# Add the words to the vocabulary. | |
for i, word in enumerate(words): | |
vocab_toks.add_word(word) | |
vocab_toks.add_word('<pad>') | |
# Ingredient vocab | |
# Create a vocab wrapper for ingredients | |
vocab_ingrs = Vocabulary() | |
idx = vocab_ingrs.add_word('<end>') | |
# this returns the next idx to add words to | |
# Add the ingredients to the vocabulary. | |
for k, _ in ingrs.items(): | |
for ingr in cluster_ingrs[k]: | |
idx = vocab_ingrs.add_word(ingr, idx) | |
idx += 1 | |
_ = vocab_ingrs.add_word('<pad>', idx) | |
print("Total ingr vocabulary size: {}".format(len(vocab_ingrs))) | |
print("Total token vocabulary size: {}".format(len(vocab_toks))) | |
dataset = {'train': [], 'val': [], 'test': []} | |
###### | |
# 2. Tokenize and build dataset based on vocabularies. | |
###### | |
for i, entry in tqdm(enumerate(layer1)): | |
# get all instructions for this recipe | |
instrs = entry['instructions'] | |
instrs_list = [] | |
ingrs_list = [] | |
images_list = [] | |
# retrieve pre-detected ingredients for this entry | |
det_ingrs = dets[idx2ind[entry['id']]]['ingredients'] | |
valid = dets[idx2ind[entry['id']]]['valid'] | |
labels = [] | |
for j, det_ingr in enumerate(det_ingrs): | |
if len(det_ingr) > 0 and valid[j]: | |
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs) | |
ingrs_list.append(det_ingr_undrs) | |
label_idx = vocab_ingrs(det_ingr_undrs) | |
if label_idx is not vocab_ingrs('<pad>') and label_idx not in labels: | |
labels.append(label_idx) | |
# get raw text for instructions of this entry | |
acc_len = 0 | |
for instr in instrs: | |
instr = instr['text'] | |
instr = get_instruction(instr, replace_dict_instrs) | |
if len(instr) > 0: | |
acc_len += len(instr) | |
instrs_list.append(instr) | |
# we discard recipes with too many or too few ingredients or instruction words | |
if len(labels) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \ | |
or len(instrs_list) >= args.maxnuminstrs or len(labels) >= args.maxnumingrs \ | |
or acc_len < args.minnumwords: | |
continue | |
if entry['id'] in id2im.keys(): | |
ims = layer2[id2im[entry['id']]] | |
# copy image paths for this recipe | |
for im in ims['images']: | |
images_list.append(im['id']) | |
# tokenize sentences | |
toks = [] | |
for instr in instrs_list: | |
tokens = nltk.tokenize.word_tokenize(instr) | |
toks.append(tokens) | |
title = nltk.tokenize.word_tokenize(entry['title'].lower()) | |
newentry = {'id': entry['id'], 'instructions': instrs_list, 'tokenized': toks, | |
'ingredients': ingrs_list, 'images': images_list, 'title': title} | |
dataset[entry['partition']].append(newentry) | |
print('Dataset size:') | |
for split in dataset.keys(): | |
print(split, ':', len(dataset[split])) | |
return vocab_ingrs, vocab_toks, dataset | |
def main(args): | |
vocab_ingrs, vocab_toks, dataset = build_vocab_recipe1m(args) | |
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_ingrs.pkl'), 'wb') as f: | |
pickle.dump(vocab_ingrs, f) | |
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_toks.pkl'), 'wb') as f: | |
pickle.dump(vocab_toks, f) | |
for split in dataset.keys(): | |
with open(os.path.join(args.save_path, args.suff+'recipe1m_' + split + '.pkl'), 'wb') as f: | |
pickle.dump(dataset[split], f) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--recipe1m_path', type=str, | |
default='path/to/recipe1m', | |
help='recipe1m path') | |
parser.add_argument('--save_path', type=str, default='../data/', | |
help='path for saving vocabulary wrapper') | |
parser.add_argument('--suff', type=str, default='') | |
parser.add_argument('--threshold_ingrs', type=int, default=10, | |
help='minimum ingr count threshold') | |
parser.add_argument('--threshold_words', type=int, default=10, | |
help='minimum word count threshold') | |
parser.add_argument('--maxnuminstrs', type=int, default=20, | |
help='max number of instructions (sentences)') | |
parser.add_argument('--maxnumingrs', type=int, default=20, | |
help='max number of ingredients') | |
parser.add_argument('--minnuminstrs', type=int, default=2, | |
help='max number of instructions (sentences)') | |
parser.add_argument('--minnumingrs', type=int, default=2, | |
help='max number of ingredients') | |
parser.add_argument('--minnumwords', type=int, default=20, | |
help='minimum number of characters in recipe') | |
parser.add_argument('--forcegen', dest='forcegen', action='store_true') | |
parser.set_defaults(forcegen=False) | |
args = parser.parse_args() | |
main(args) | |