recipedia / src /model.py
johnsonhung
init
2a3a041
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn as nn
import random
import numpy as np
from src.modules.encoder import EncoderCNN, EncoderLabels
from src.modules.transformer_decoder import DecoderTransformer
from src.modules.multihead_attention import MultiheadAttention
from src.utils.metrics import softIoU, MaskedCrossEntropyCriterion
import pickle
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def label2onehot(labels, pad_value):
# input labels to one hot vector
inp_ = torch.unsqueeze(labels, 2)
one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device)
one_hot.scatter_(2, inp_, 1)
one_hot, _ = one_hot.max(dim=1)
# remove pad position
one_hot = one_hot[:, :-1]
# eos position is always 0
one_hot[:, 0] = 0
return one_hot
def mask_from_eos(ids, eos_value, mult_before=True):
mask = torch.ones(ids.size()).to(device).byte()
mask_aux = torch.ones(ids.size(0)).to(device).byte()
# find eos in ingredient prediction
for idx in range(ids.size(1)):
# force mask to have 1s in the first position to avoid division by 0 when predictions start with eos
if idx == 0:
continue
if mult_before:
mask[:, idx] = mask[:, idx] * mask_aux
mask_aux = mask_aux * (ids[:, idx] != eos_value)
else:
mask_aux = mask_aux * (ids[:, idx] != eos_value)
mask[:, idx] = mask[:, idx] * mask_aux
return mask
def get_model(args, ingr_vocab_size, instrs_vocab_size):
# build ingredients embedding
encoder_ingrs = EncoderLabels(args.embed_size, ingr_vocab_size,
args.dropout_encoder, scale_grad=False).to(device)
# build image model
encoder_image = EncoderCNN(args.embed_size, args.dropout_encoder, args.image_model)
decoder = DecoderTransformer(args.embed_size, instrs_vocab_size,
dropout=args.dropout_decoder_r, seq_length=args.maxseqlen,
num_instrs=args.maxnuminstrs,
attention_nheads=args.n_att, num_layers=args.transf_layers,
normalize_before=True,
normalize_inputs=False,
last_ln=False,
scale_embed_grad=False)
ingr_decoder = DecoderTransformer(args.embed_size, ingr_vocab_size, dropout=args.dropout_decoder_i,
seq_length=args.maxnumlabels,
num_instrs=1, attention_nheads=args.n_att_ingrs,
pos_embeddings=False,
num_layers=args.transf_layers_ingrs,
learned=False,
normalize_before=True,
normalize_inputs=True,
last_ln=True,
scale_embed_grad=False)
# recipe loss
criterion = MaskedCrossEntropyCriterion(ignore_index=[instrs_vocab_size-1], reduce=False)
# ingredients loss
label_loss = nn.BCELoss(reduce=False)
eos_loss = nn.BCELoss(reduce=False)
model = InverseCookingModel(encoder_ingrs, decoder, ingr_decoder, encoder_image,
crit=criterion, crit_ingr=label_loss, crit_eos=eos_loss,
pad_value=ingr_vocab_size-1,
ingrs_only=args.ingrs_only, recipe_only=args.recipe_only,
label_smoothing=args.label_smoothing_ingr)
return model
class InverseCookingModel(nn.Module):
def __init__(self, ingredient_encoder, recipe_decoder, ingr_decoder, image_encoder,
crit=None, crit_ingr=None, crit_eos=None,
pad_value=0, ingrs_only=True,
recipe_only=False, label_smoothing=0.0):
super(InverseCookingModel, self).__init__()
self.ingredient_encoder = ingredient_encoder
self.recipe_decoder = recipe_decoder
self.image_encoder = image_encoder
self.ingredient_decoder = ingr_decoder
self.crit = crit
self.crit_ingr = crit_ingr
self.pad_value = pad_value
self.ingrs_only = ingrs_only
self.recipe_only = recipe_only
self.crit_eos = crit_eos
self.label_smoothing = label_smoothing
def forward(self, img_inputs, captions, target_ingrs,
sample=False, keep_cnn_gradients=False):
if sample:
return self.sample(img_inputs, greedy=True)
targets = captions[:, 1:]
targets = targets.contiguous().view(-1)
img_features = self.image_encoder(img_inputs, keep_cnn_gradients)
losses = {}
target_one_hot = label2onehot(target_ingrs, self.pad_value)
target_one_hot_smooth = label2onehot(target_ingrs, self.pad_value)
# ingredient prediction
if not self.recipe_only:
target_one_hot_smooth[target_one_hot_smooth == 1] = (1-self.label_smoothing)
target_one_hot_smooth[target_one_hot_smooth == 0] = self.label_smoothing / target_one_hot_smooth.size(-1)
# decode ingredients with transformer
# autoregressive mode for ingredient decoder
ingr_ids, ingr_logits = self.ingredient_decoder.sample(None, None, greedy=True,
temperature=1.0, img_features=img_features,
first_token_value=0, replacement=False)
ingr_logits = torch.nn.functional.softmax(ingr_logits, dim=-1)
# find idxs for eos ingredient
# eos probability is the one assigned to the first position of the softmax
eos = ingr_logits[:, :, 0]
target_eos = ((target_ingrs == 0) ^ (target_ingrs == self.pad_value))
eos_pos = (target_ingrs == 0)
eos_head = ((target_ingrs != self.pad_value) & (target_ingrs != 0))
# select transformer steps to pool from
mask_perminv = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)
ingr_probs = ingr_logits * mask_perminv.float().unsqueeze(-1)
ingr_probs, _ = torch.max(ingr_probs, dim=1)
# ignore predicted ingredients after eos in ground truth
ingr_ids[mask_perminv == 0] = self.pad_value
ingr_loss = self.crit_ingr(ingr_probs, target_one_hot_smooth)
ingr_loss = torch.mean(ingr_loss, dim=-1)
losses['ingr_loss'] = ingr_loss
# cardinality penalty
losses['card_penalty'] = torch.abs((ingr_probs*target_one_hot).sum(1) - target_one_hot.sum(1)) + \
torch.abs((ingr_probs*(1-target_one_hot)).sum(1))
eos_loss = self.crit_eos(eos, target_eos.float())
mult = 1/2
# eos loss is only computed for timesteps <= t_eos and equally penalizes 0s and 1s
losses['eos_loss'] = mult*(eos_loss * eos_pos.float()).sum(1) / (eos_pos.float().sum(1) + 1e-6) + \
mult*(eos_loss * eos_head.float()).sum(1) / (eos_head.float().sum(1) + 1e-6)
# iou
pred_one_hot = label2onehot(ingr_ids, self.pad_value)
# iou sample during training is computed using the true eos position
losses['iou'] = softIoU(pred_one_hot, target_one_hot)
if self.ingrs_only:
return losses
# encode ingredients
target_ingr_feats = self.ingredient_encoder(target_ingrs)
target_ingr_mask = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)
target_ingr_mask = target_ingr_mask.float().unsqueeze(1)
outputs, ids = self.recipe_decoder(target_ingr_feats, target_ingr_mask, captions, img_features)
outputs = outputs[:, :-1, :].contiguous()
outputs = outputs.view(outputs.size(0) * outputs.size(1), -1)
loss = self.crit(outputs, targets)
losses['recipe_loss'] = loss
return losses
def sample(self, img_inputs, greedy=True, temperature=1.0, beam=-1, true_ingrs=None):
outputs = dict()
img_features = self.image_encoder(img_inputs)
if not self.recipe_only:
ingr_ids, ingr_probs = self.ingredient_decoder.sample(None, None, greedy=True, temperature=temperature,
beam=-1,
img_features=img_features, first_token_value=0,
replacement=False)
# mask ingredients after finding eos
sample_mask = mask_from_eos(ingr_ids, eos_value=0, mult_before=False)
ingr_ids[sample_mask == 0] = self.pad_value
outputs['ingr_ids'] = ingr_ids
outputs['ingr_probs'] = ingr_probs.data
mask = sample_mask
input_mask = mask.float().unsqueeze(1)
input_feats = self.ingredient_encoder(ingr_ids)
if self.ingrs_only:
return outputs
# option during sampling to use the real ingredients and not the predicted ones to infer the recipe
if true_ingrs is not None:
input_mask = mask_from_eos(true_ingrs, eos_value=0, mult_before=False)
true_ingrs[input_mask == 0] = self.pad_value
input_feats = self.ingredient_encoder(true_ingrs)
input_mask = input_mask.unsqueeze(1)
ids, probs = self.recipe_decoder.sample(input_feats, input_mask, greedy, temperature, beam, img_features, 0,
last_token_value=1)
outputs['recipe_probs'] = probs.data
outputs['recipe_ids'] = ids
return outputs