|
import librosa |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from cached_path import cached_path |
|
import random |
|
import nltk |
|
from models import build_model |
|
from text_utils import TextCleaner |
|
from nltk.tokenize import word_tokenize |
|
import phonemizer |
|
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule |
|
from utils import recursive_munch |
|
from Utils.PLBERT.util import load_plbert |
|
|
|
nltk.download("punkt") |
|
np.random.seed(0) |
|
random.seed(0) |
|
torch.manual_seed(0) |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
|
|
global_phonemizer = phonemizer.backend.EspeakBackend( |
|
language="en-us", preserve_punctuation=True, with_stress=True |
|
) |
|
|
|
|
|
textcleaner = TextCleaner() |
|
|
|
|
|
to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=80, n_fft=2048, win_length=1200, hop_length=300 |
|
) |
|
mean, std = -4, 4 |
|
|
|
|
|
def length_to_mask(lengths): |
|
mask = ( |
|
torch.arange(lengths.max()) |
|
.unsqueeze(0) |
|
.expand(lengths.shape[0], -1) |
|
.type_as(lengths) |
|
) |
|
mask = torch.gt(mask + 1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
|
|
def preprocess(wave): |
|
wave_tensor = torch.from_numpy(wave).float() |
|
mel_tensor = to_mel(wave_tensor) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std |
|
return mel_tensor |
|
|
|
|
|
def compute_style(path): |
|
wave, sr = librosa.load(path, sr=24000) |
|
audio, index = librosa.effects.trim(wave, top_db=30) |
|
if sr != 24000: |
|
audio = librosa.resample(audio, sr, 24000) |
|
mel_tensor = preprocess(audio).to(device) |
|
|
|
with torch.no_grad(): |
|
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) |
|
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) |
|
|
|
return torch.cat([ref_s, ref_p], dim=1) |
|
|
|
|
|
device = "cpu" |
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
elif torch.backends.mps.is_available(): |
|
print("MPS would be available but cannot be used rn") |
|
|
|
|
|
|
|
config = { |
|
"ASR_config": "Utils/ASR/config.yml", |
|
"ASR_path": "Utils/ASR/epoch_00080.pth", |
|
"F0_path": "Utils/JDC/bst.t7", |
|
"PLBERT_dir": "Utils/PLBERT/", |
|
"batch_size": 8, |
|
"data_params": { |
|
"OOD_data": "Data/OOD_texts.txt", |
|
"min_length": 50, |
|
"root_path": "", |
|
"train_data": "Data/train_list.txt", |
|
"val_data": "Data/val_list.txt", |
|
}, |
|
"device": "cuda", |
|
"epochs_1st": 40, |
|
"epochs_2nd": 25, |
|
"first_stage_path": "first_stage.pth", |
|
"load_only_params": False, |
|
"log_dir": "Models/LibriTTS", |
|
"log_interval": 10, |
|
"loss_params": { |
|
"TMA_epoch": 4, |
|
"diff_epoch": 0, |
|
"joint_epoch": 0, |
|
"lambda_F0": 1.0, |
|
"lambda_ce": 20.0, |
|
"lambda_diff": 1.0, |
|
"lambda_dur": 1.0, |
|
"lambda_gen": 1.0, |
|
"lambda_mel": 5.0, |
|
"lambda_mono": 1.0, |
|
"lambda_norm": 1.0, |
|
"lambda_s2s": 1.0, |
|
"lambda_slm": 1.0, |
|
"lambda_sty": 1.0, |
|
}, |
|
"max_len": 300, |
|
"model_params": { |
|
"decoder": { |
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
"resblock_kernel_sizes": [3, 7, 11], |
|
"type": "hifigan", |
|
"upsample_initial_channel": 512, |
|
"upsample_kernel_sizes": [20, 10, 6, 4], |
|
"upsample_rates": [10, 5, 3, 2], |
|
}, |
|
"diffusion": { |
|
"dist": { |
|
"estimate_sigma_data": True, |
|
"mean": -3.0, |
|
"sigma_data": 0.19926648961191362, |
|
"std": 1.0, |
|
}, |
|
"embedding_mask_proba": 0.1, |
|
"transformer": { |
|
"head_features": 64, |
|
"multiplier": 2, |
|
"num_heads": 8, |
|
"num_layers": 3, |
|
}, |
|
}, |
|
"dim_in": 64, |
|
"dropout": 0, |
|
"hidden_dim": 512, |
|
"max_conv_dim": 512, |
|
"max_dur": 50, |
|
"multispeaker": True, |
|
"n_layer": 3, |
|
"n_mels": 80, |
|
"n_token": 178, |
|
"slm": { |
|
"hidden": 768, |
|
"initial_channel": 64, |
|
"model": "microsoft/wavlm-base-plus", |
|
"nlayers": 13, |
|
"sr": 16000, |
|
}, |
|
"style_dim": 128, |
|
}, |
|
"optimizer_params": {"bert_lr": 1e-05, "ft_lr": 1e-05, "lr": 0.0001}, |
|
"preprocess_params": { |
|
"spect_params": {"hop_length": 300, "n_fft": 2048, "win_length": 1200}, |
|
"sr": 24000, |
|
}, |
|
"pretrained_model": "Models/LibriTTS/epoch_2nd_00002.pth", |
|
"save_freq": 1, |
|
"second_stage_load_pretrained": True, |
|
"slmadv_params": { |
|
"batch_percentage": 0.5, |
|
"iter": 20, |
|
"max_len": 500, |
|
"min_len": 400, |
|
"scale": 0.01, |
|
"sig": 1.5, |
|
"thresh": 5, |
|
}, |
|
} |
|
|
|
|
|
BERT_path = config.get("PLBERT_dir", False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
|
|
model_params = recursive_munch(config["model_params"]) |
|
model = build_model(model_params, plbert) |
|
_ = [model[key].eval() for key in model] |
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
params_whole = torch.load( |
|
str(cached_path("https://base-weights.weights.gg/epochs_2nd_00020.pth")), |
|
map_location="cpu", |
|
) |
|
params = params_whole["net"] |
|
|
|
for key in model: |
|
if key in params: |
|
print("%s loaded" % key) |
|
try: |
|
model[key].load_state_dict(params[key]) |
|
except: |
|
from collections import OrderedDict |
|
|
|
state_dict = params[key] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model[key].load_state_dict(new_state_dict, strict=False) |
|
|
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
|
|
sampler = DiffusionSampler( |
|
model.diffusion.diffusion, |
|
sampler=ADPM2Sampler(), |
|
sigma_schedule=KarrasSchedule( |
|
sigma_min=0.0001, sigma_max=3.0, rho=9.0 |
|
), |
|
clamp=False, |
|
) |
|
|
|
|
|
def inference( |
|
text, |
|
ref_s, |
|
alpha=0.3, |
|
beta=0.7, |
|
diffusion_steps=5, |
|
embedding_scale=1, |
|
use_gruut=False, |
|
): |
|
text = text.strip() |
|
ps = global_phonemizer.phonemize([text]) |
|
ps = word_tokenize(ps[0]) |
|
ps = " ".join(ps) |
|
tokens = textcleaner(ps) |
|
tokens.insert(0, 0) |
|
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) |
|
text_mask = length_to_mask(input_lengths).to(device) |
|
|
|
t_en = model.text_encoder(tokens, input_lengths, text_mask) |
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
s_pred = sampler( |
|
noise=torch.randn((1, 256)).unsqueeze(1).to(device), |
|
embedding=bert_dur, |
|
embedding_scale=embedding_scale, |
|
features=ref_s, |
|
num_steps=diffusion_steps, |
|
).squeeze(1) |
|
|
|
s = s_pred[:, 128:] |
|
ref = s_pred[:, :128] |
|
|
|
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] |
|
s = beta * s + (1 - beta) * ref_s[:, 128:] |
|
|
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) |
|
|
|
x, _ = model.predictor.lstm(d) |
|
duration = model.predictor.duration_proj(x) |
|
|
|
duration = torch.sigmoid(duration).sum(axis=-1) |
|
pred_dur = torch.round(duration.squeeze()).clamp(min=1) |
|
|
|
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) |
|
c_frame = 0 |
|
for i in range(pred_aln_trg.size(0)): |
|
pred_aln_trg[i, c_frame : c_frame + int(pred_dur[i].data)] = 1 |
|
c_frame += int(pred_dur[i].data) |
|
|
|
|
|
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) |
|
asr_new = torch.zeros_like(en) |
|
asr_new[:, :, 0] = en[:, :, 0] |
|
asr_new[:, :, 1:] = en[:, :, 0:-1] |
|
en = asr_new |
|
|
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) |
|
|
|
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) |
|
asr_new = torch.zeros_like(asr) |
|
asr_new[:, :, 0] = asr[:, :, 0] |
|
asr_new[:, :, 1:] = asr[:, :, 0:-1] |
|
asr = asr_new |
|
|
|
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) |
|
|
|
return ( |
|
out.squeeze().cpu().numpy()[..., :-50] |
|
) |
|
|