styletts2 / styletts2importable.py
jonluca's picture
use remove url to load pth
61a2d96 unverified
import librosa
import numpy as np
import torch
import torchaudio
from cached_path import cached_path
import random
import nltk
from models import build_model
from text_utils import TextCleaner
from nltk.tokenize import word_tokenize
import phonemizer
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
from utils import recursive_munch
from Utils.PLBERT.util import load_plbert
nltk.download("punkt")
np.random.seed(0)
random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
global_phonemizer = phonemizer.backend.EspeakBackend(
language="en-us", preserve_punctuation=True, with_stress=True
)
textcleaner = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4
def length_to_mask(lengths):
mask = (
torch.arange(lengths.max())
.unsqueeze(0)
.expand(lengths.shape[0], -1)
.type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
print("MPS would be available but cannot be used rn")
# device = "mps"
# config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
config = {
"ASR_config": "Utils/ASR/config.yml",
"ASR_path": "Utils/ASR/epoch_00080.pth",
"F0_path": "Utils/JDC/bst.t7",
"PLBERT_dir": "Utils/PLBERT/",
"batch_size": 8,
"data_params": {
"OOD_data": "Data/OOD_texts.txt",
"min_length": 50,
"root_path": "",
"train_data": "Data/train_list.txt",
"val_data": "Data/val_list.txt",
},
"device": "cuda",
"epochs_1st": 40,
"epochs_2nd": 25,
"first_stage_path": "first_stage.pth",
"load_only_params": False,
"log_dir": "Models/LibriTTS",
"log_interval": 10,
"loss_params": {
"TMA_epoch": 4,
"diff_epoch": 0,
"joint_epoch": 0,
"lambda_F0": 1.0,
"lambda_ce": 20.0,
"lambda_diff": 1.0,
"lambda_dur": 1.0,
"lambda_gen": 1.0,
"lambda_mel": 5.0,
"lambda_mono": 1.0,
"lambda_norm": 1.0,
"lambda_s2s": 1.0,
"lambda_slm": 1.0,
"lambda_sty": 1.0,
},
"max_len": 300,
"model_params": {
"decoder": {
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"resblock_kernel_sizes": [3, 7, 11],
"type": "hifigan",
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [20, 10, 6, 4],
"upsample_rates": [10, 5, 3, 2],
},
"diffusion": {
"dist": {
"estimate_sigma_data": True,
"mean": -3.0,
"sigma_data": 0.19926648961191362,
"std": 1.0,
},
"embedding_mask_proba": 0.1,
"transformer": {
"head_features": 64,
"multiplier": 2,
"num_heads": 8,
"num_layers": 3,
},
},
"dim_in": 64,
"dropout": 0,
"hidden_dim": 512,
"max_conv_dim": 512,
"max_dur": 50,
"multispeaker": True,
"n_layer": 3,
"n_mels": 80,
"n_token": 178,
"slm": {
"hidden": 768,
"initial_channel": 64,
"model": "microsoft/wavlm-base-plus",
"nlayers": 13,
"sr": 16000,
},
"style_dim": 128,
},
"optimizer_params": {"bert_lr": 1e-05, "ft_lr": 1e-05, "lr": 0.0001},
"preprocess_params": {
"spect_params": {"hop_length": 300, "n_fft": 2048, "win_length": 1200},
"sr": 24000,
},
"pretrained_model": "Models/LibriTTS/epoch_2nd_00002.pth",
"save_freq": 1,
"second_stage_load_pretrained": True,
"slmadv_params": {
"batch_percentage": 0.5,
"iter": 20,
"max_len": 500,
"min_len": 400,
"scale": 0.01,
"sig": 1.5,
"thresh": 5,
},
}
BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config["model_params"])
model = build_model(model_params, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
# for key in model:
# print(f"Compiling {key}")
# model[key] = torch.compile(model[key])
# print(f"Compiled {key}")
params_whole = torch.load(
str(cached_path("https://base-weights.weights.gg/epochs_2nd_00020.pth")),
map_location="cpu",
)
params = params_whole["net"]
for key in model:
if key in params:
print("%s loaded" % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(
sigma_min=0.0001, sigma_max=3.0, rho=9.0
), # empirical parameters
clamp=False,
)
def inference(
text,
ref_s,
alpha=0.3,
beta=0.7,
diffusion_steps=5,
embedding_scale=1,
use_gruut=False,
):
text = text.strip()
ps = global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = " ".join(ps)
tokens = textcleaner(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(
noise=torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps,
).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame : c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return (
out.squeeze().cpu().numpy()[..., :-50]
) # weird pulse at the end of the model, need to be fixed later