jozee's picture
Update app.py
0a2db71 verified
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width>=target_width:
return False
if alignment in ("Top","Bottom") and source_height>=target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
#Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0]/image.width, target_size[1]/image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
#Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
#Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_option = 25
else:
resize_percentage = custom_resize_percentage
#calculate new dimensions based on percentage
resize_factor = resize_percentage/100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
#Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
#Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
#Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage/100))
overlap_y = int(new_height * (overlap_percentage/100))
#Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
#Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0]-new_width)//2
margin_y = (target_size[1]-new_height)//2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1]-new_height)//2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1]-new_height)//2
elif alignment == "Top":
margin_x = (target_size[0]-new_width)//2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0]-new_width)//2
margin_y = target_size[1] - new_height
#adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0]-new_width))
margin_y = max(0, min(margin_y, target_size[1]-new_height))
#Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255,255,255))
background.paste(source, (margin_x, margin_y))
#Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
#Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x+white_gaps_patch
right_overlap = margin_x + new_width-overlap_x if overlap_right else margin_x+new_width-white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y+new_height-white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
#Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
#Create a preview image showing the mask
preview = background.copy().convert('RGBA')
#Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) #Reduced alpha to 64(25% opacity)
#Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0,0,0,0))
red_mask.paste(red_overlay, (0,0), mask)
#Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0,0), mask)
final_prompt = f"{prompt_input}, high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
print("hello world in infer function!!!!!!!!!!!!!!!!")
for image in pipe(
prompt_embeds = prompt_embeds,
negative_prompt_embeds = negative_prompt_embeds,
pooled_prompt_embeds = pooled_prompt_embeds,
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
image = cnet_image,
num_inference_steps=num_inference_steps
):
# yield cnet_image, image
pass
image = image.convert('RGBA')
cnet_image.paste(image, (0,0), mask)
# yield background, cnet_image
print("#####################",type(cnet_image),"##############################")
return cnet_image
def clear_result():
"""Clears the result ImageSlider."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option=="Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
history.insert(0, new_image)
return history
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
run_button = gr.Button('Generate')
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=['Middle','Left','Right','Top','Bottom'],
value='Middle',
label='Alignment'
)
#高级配置,当选择custom的时候会自动打开
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
#自定义的宽高
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=720,
maximum=1536,
step=8,
value=720, #Set a default value
)
height_slider = gr.Slider(
label="Target Height",
minimum=720,
maximum=1536,
step=8,
value=1280, #Set a default value
)
#生成步数
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
#组件组
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label = "Resize input image",
choices = ["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum = 1,
maximum = 100,
step = 1,
value = 50,
visible = False
)
with gr.Column():
preview_button = gr.Button("Preview alignment and mask")
with gr.Column():
result = gr.Image(label="Generate Image", interactive=False)
# result = ImageSlider(label="Generated Image")
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
preview_image = gr.Image(label="Preview")
target_ratio.change(
fn=preload_presets, #选择ratio aspect 的单选框时,调用这个函数
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
run_button.click(#Clear the result
fn=clear_result,
inputs=None,
outputs=result,
).then( #Generate the new image
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[result],
).then(#Update the history gallery
fn=lambda x,history: update_history(x, history),
inputs=[result, history_gallery],
outputs=history_gallery,
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_image,
queue=False
)
demo.queue(max_size=12).launch(share=False)