File size: 4,962 Bytes
ac3b3f0 6c160b4 ac3b3f0 6c160b4 ac3b3f0 fc356c3 ac3b3f0 51ff69d ac3b3f0 fc356c3 ac3b3f0 fc356c3 ac3b3f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import datetime
import os
from langchain.chains import VectorDBQAWithSourcesChain
import gradio as gr
import langchain
from langchain.vectorstores import Weaviate
import faiss
import pickle
from langchain import OpenAI
from arxiv import get_paper
from ingest_faiss import create_vector_store
def get_vectorstore(suffix):
index = faiss.read_index(f"{suffix}/docs.index")
with open(f"{suffix}/faiss_store.pkl", "rb") as f:
store = pickle.load(f)
store.index = index
return store
def set_openai_api_key(api_key, agent):
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
vectorstore = get_vectorstore()
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
os.environ["OPENAI_API_KEY"] = ""
return qa_chain
def download_paper_and_embed(paper_arxiv_url, api_key):
if paper_arxiv_url and api_key:
paper_text = get_paper(paper_arxiv_url)
if 'abs' in paper_arxiv_url:
eprint_url = paper_arxiv_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/")
elif 'pdf' in paper_arxiv_url:
eprint_url = paper_arxiv_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/")
else:
raise ValueError("Invalid arXiv URL")
suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "")
os.environ["OPENAI_API_KEY"] = api_key
if not os.path.exists(suffix + "/docs.index"):
create_vector_store(suffix, paper_text)
vectorstore = get_vectorstore(suffix)
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
return qa_chain
chain = None
def chat(inp, history, paper_arxiv_url, api_key, agent):
global chain
if history is None:
chain = download_paper_and_embed(paper_arxiv_url, api_key)
history = history or []
# if agent is None:
# history.append((inp, "Please paste your OpenAI key to use"))
# return history, history
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
history = history or []
agent = chain
output = agent({"question": inp})
answer = output["answer"]
sources = output["sources"]
sources = sources.split(", ")
sources = ", ".join([s.title() for s in sources])
history.append((inp, answer))
history.append(("Sources?", sources))
print(history)
return history, history
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
with block:
state = gr.State()
agent_state = gr.State()
with gr.Row():
gr.Markdown("<h3><center>PaperChat</center></h3>")
paper_arxiv_url = gr.Textbox(
placeholder="Paste the URL of the paper about which you want to ask a question",
show_label=False,
lines=1,
type="text",
)
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...)",
show_label=False,
lines=1,
type="password",
)
# # button to download paper
# download_paper_button = gr.Button(
# value="Download paper and make embeddings",
# variant="secondary",
# ).click(
# download_paper_and_embed,
# inputs=[paper_arxiv_url, openai_api_key_textbox, agent_state],
# outputs=[agent_state],
# )
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="What's the answer to life, the universe, and everything?",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
# gr.Examples(
# examples=[
# "What are agents?",
# "How do I summarize a long document?",
# "What types of memory exist?",
# ],
# inputs=message,
# )
gr.HTML(
"""Ask questions of any arXiv paper and get factual answers with sources"""
)
gr.HTML(
"<center>By <a href='https://twitter.com/0xjasper'>Jasper</a>, powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
)
submit.click(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
message.submit(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
# paper_arxiv_url.change(
# download_paper_and_embed,
# inputs=[paper_arxiv_url, agent_state],
# outputs=[agent_state],
# )
# openai_api_key_textbox.change(
# set_openai_api_key,
# inputs=[openai_api_key_textbox, agent_state],
# outputs=[agent_state],
# )
block.launch(debug=True)
|