File size: 4,962 Bytes
ac3b3f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c160b4
ac3b3f0
 
 
6c160b4
ac3b3f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc356c3
 
ac3b3f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51ff69d
ac3b3f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc356c3
ac3b3f0
 
 
fc356c3
ac3b3f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import datetime
import os
from langchain.chains import VectorDBQAWithSourcesChain
import gradio as gr
import langchain
from langchain.vectorstores import Weaviate
import faiss
import pickle
from langchain import OpenAI
from arxiv import get_paper
from ingest_faiss import create_vector_store

def get_vectorstore(suffix):
    index = faiss.read_index(f"{suffix}/docs.index")
    with open(f"{suffix}/faiss_store.pkl", "rb") as f:
        store = pickle.load(f)
    store.index = index
    return store

def set_openai_api_key(api_key, agent):
    if api_key:
        os.environ["OPENAI_API_KEY"] = api_key
        vectorstore = get_vectorstore()
        qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
        os.environ["OPENAI_API_KEY"] = ""
        return qa_chain

def download_paper_and_embed(paper_arxiv_url, api_key):
    if paper_arxiv_url and api_key:
        paper_text = get_paper(paper_arxiv_url)
        if 'abs' in paper_arxiv_url:
            eprint_url = paper_arxiv_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/")
        elif 'pdf' in paper_arxiv_url:
            eprint_url = paper_arxiv_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/")
        else:
            raise ValueError("Invalid arXiv URL")
        suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "")
        os.environ["OPENAI_API_KEY"] = api_key
        if not os.path.exists(suffix + "/docs.index"):
            create_vector_store(suffix, paper_text)

        
        vectorstore = get_vectorstore(suffix)
        qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
        return qa_chain

chain = None

def chat(inp, history, paper_arxiv_url, api_key, agent):
    global chain
    if history is None:
        chain = download_paper_and_embed(paper_arxiv_url, api_key)
    history = history or []
    # if agent is None:
    #     history.append((inp, "Please paste your OpenAI key to use"))
    #     return history, history
    print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
    print("inp: " + inp)
    history = history or []
    agent = chain
    output = agent({"question": inp})
    answer = output["answer"]
    sources = output["sources"]
    sources = sources.split(", ")
    sources = ", ".join([s.title() for s in sources])
    history.append((inp, answer))
    history.append(("Sources?", sources))
    print(history)
    return history, history

block = gr.Blocks(css=".gradio-container {background-color: lightgray}")

with block:
    state = gr.State()
    agent_state = gr.State()
    with gr.Row():
        gr.Markdown("<h3><center>PaperChat</center></h3>")

        paper_arxiv_url = gr.Textbox(
            placeholder="Paste the URL of the paper about which you want to ask a question",
            show_label=False,
            lines=1,
            type="text",
        )

        openai_api_key_textbox = gr.Textbox(
            placeholder="Paste your OpenAI API key (sk-...)",
            show_label=False,
            lines=1,
            type="password",
        )

        # # button to download paper
        # download_paper_button = gr.Button(
        #     value="Download paper and make embeddings",
        #     variant="secondary",
        # ).click(
        #     download_paper_and_embed,
        #     inputs=[paper_arxiv_url, openai_api_key_textbox, agent_state],
        #     outputs=[agent_state],
        # )

    chatbot = gr.Chatbot()

    with gr.Row():
        message = gr.Textbox(
            label="What's your question?",
            placeholder="What's the answer to life, the universe, and everything?",
            lines=1,
        )
        submit = gr.Button(value="Send", variant="secondary").style(full_width=False)

    # gr.Examples(
    #     examples=[
    #         "What are agents?",
    #         "How do I summarize a long document?",
    #         "What types of memory exist?",
    #     ],
    #     inputs=message,
    # )

    gr.HTML(
        """Ask questions of any arXiv paper and get factual answers with sources"""
    )

    gr.HTML(
        "<center>By <a href='https://twitter.com/0xjasper'>Jasper</a>, powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
    )

    submit.click(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
    message.submit(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])

    # paper_arxiv_url.change(
    #     download_paper_and_embed,
    #     inputs=[paper_arxiv_url, agent_state],
    #     outputs=[agent_state],
    # )

    # openai_api_key_textbox.change(
    #     set_openai_api_key,
    #     inputs=[openai_api_key_textbox, agent_state],
    #     outputs=[agent_state],
    # )

block.launch(debug=True)