File size: 10,663 Bytes
9a8d079
9cd5d9e
317f161
11067be
68b374e
 
256f7c8
 
9a8d079
 
317f161
 
68b374e
317f161
68b374e
9a8d079
 
68b374e
 
 
 
 
 
 
 
9a8d079
256f7c8
68b374e
 
317f161
9a8d079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317f161
68b374e
9a8d079
11067be
 
 
9a8d079
68b374e
 
9a8d079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b374e
 
256f7c8
68b374e
9a8d079
256f7c8
68b374e
 
 
256f7c8
68b374e
256f7c8
68b374e
256f7c8
 
 
 
 
 
 
 
 
 
 
9a8d079
 
 
 
 
256f7c8
9a8d079
 
68b374e
 
256f7c8
68b374e
 
 
256f7c8
 
 
 
 
 
68b374e
9a8d079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11067be
68b374e
11067be
 
 
256f7c8
9a8d079
68b374e
 
9a8d079
 
 
68b374e
256f7c8
9a8d079
 
 
256f7c8
9a8d079
68b374e
9cd5d9e
f239c56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from collections import Counter
import gradio as gr
from datasets import load_dataset
from nltk.util import ngrams
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from matplotlib import pyplot as plt
from wordcloud import WordCloud

# Load the dataset and convert it to a Pandas dataframe
sotu_dataset = "jsulz/state-of-the-union-addresses"
dataset = load_dataset(sotu_dataset)
df = dataset["train"].to_pandas()
# Do some on-the-fly calculations
# calcualte the number of words in each address
df["word_count"] = df["speech_html"].apply(lambda x: len(x.split()))
# calculate the automated readibility index reading ease score for each address
# automated readability index = 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43
df["ari"] = df["no-contractions"].apply(
    lambda x: (4.71 * (len(x.replace(" ", "")) / len(x.split())))
    + (0.5 * (len(x.split()) / len(x.split("."))))
    - 21.43
)
# Sort the dataframe by date because Plotly doesn't do any of this automatically
df = df.sort_values(by="date")
written = df[df["categories"] == "Written"]
spoken = df[df["categories"] == "Spoken"]

"""
Helper functions for Plotly charts
"""


def plotly_ngrams(n_grams, potus):
    if potus is not None:
        # Filter on the potus
        potus_df = df[df["potus"] == potus]
        # Create a counter generator for the n-grams
        trigrams = (
            potus_df["tokens-nostop"]
            .apply(lambda x: list(ngrams(x, n_grams)))
            .apply(Counter)
            .sum()
        )
        # get the most common trigrams
        common_trigrams = trigrams.most_common(10)
        # unzip the list of tuples and plot the trigrams and counts as a bar chart
        trigrams, counts = zip(*common_trigrams)
        # join the trigrams into a single string
        trigrams = [" ".join(trigram) for trigram in trigrams]
        # create a dataframe from the trigrams and counts
        trigrams_df = pd.DataFrame({"trigrams": trigrams, "counts": counts})
        fig4 = px.bar(
            trigrams_df,
            x="counts",
            y="trigrams",
            title=f"{potus}'s top {n_grams}-grams",
            orientation="h",
            height=400,
        )
        return fig4


def plotly_word_and_ari(president):
    if president != "All" and president is not None:
        potus_df = df[df["potus"] == president]
        fig5 = make_subplots(specs=[[{"secondary_y": True}]])
        fig5.add_trace(
            go.Scatter(
                x=potus_df["date"],
                y=potus_df["word_count"],
                name="Word Count",
            ),
            secondary_y=False,
        )
        fig5.add_trace(
            go.Scatter(
                x=potus_df["date"],
                y=potus_df["ari"],
                name="ARI",
            ),
            secondary_y=True,
        )
        # Add figure title
        fig5.update_layout(title_text="Address Word Count and ARI")

        # Set x-axis title
        fig5.update_xaxes(title_text="Date of Address")

        # Set y-axes titles
        fig5.update_yaxes(title_text="Word Count", secondary_y=False)
        fig5.update_yaxes(title_text="ARI", secondary_y=True)
        return fig5


def plt_wordcloud(president):
    if president != "All" and president is not None:
        potus_df = df[df["potus"] == president]
        lemmatized = potus_df["lemmatized"].apply(lambda x: " ".join(x))
        # build a single string from lemmatized
        lemmatized = " ".join(lemmatized)
        # create a wordcloud from the lemmatized column of the dataframe
        wordcloud = WordCloud(background_color="white", width=800, height=400).generate(
            lemmatized
        )
        # create a matplotlib figure
        fig6 = plt.figure(figsize=(8, 4))
        # add the wordcloud to the figure
        plt.tight_layout()
        plt.imshow(wordcloud, interpolation="bilinear")
        plt.axis("off")
        return fig6


# Create a Gradio interface with blocks
with gr.Blocks() as demo:
    # Build out the top level static charts and content
    gr.Markdown(
        """
        # A Dashboard to Analyze the State of the Union Addresses
        This dashboard provides an analysis of all State of the Union (SOTU) addresses from 1790 to 2020 including written and spoken addresses. The data is sourced from the [State of the Union Addresses dataset](https://huggingface.co/jsulz/state-of-the-union-addresses) on the Hugging Face Datasets Hub. You can read more about how the data was gathered and cleaned on the dataset card. To read the speeches, you can visit the [The American Presidency Project's State of the Union page](https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/annual-messages-congress-the-state-the-union) where this data was sourced.
        """
    )
    # Basic line chart showing the total number of words in each address
    with gr.Row():
        gr.Markdown(
            """
                    ## The shape of words
                    The line chart to the right shows the total number of words in each address. However, not all SOTUs are created equally. From 1801 to 1916, each address was a written message to Congress. In 1913, Woodrow Wilson broke with tradition and delivered his address in person. Since then, the addresses have been a mix of written and spoken (mostly spoken). 

                    The spikes you see in the early 1970's and early 1980's are from written addresses by Richard Nixon and Jimmy Carter respectively.
                    """
        )
        fig1 = px.line(
            df,
            x="date",
            y="word_count",
            title="Total Number of Words in Addresses",
            line_shape="spline",
        )
        fig1.update_layout(
            xaxis=dict(title="Date of Address"),
            yaxis=dict(title="Word Count"),
        )
        gr.Plot(fig1, scale=2)
    # group by president and category and calculate the average word count sort by date
    avg_word_count = (
        df.groupby(["potus", "categories"])["word_count"].mean().reset_index()
    )
    # Build a bar chart showing the average number of words in each address by president
    fig2 = px.bar(
        avg_word_count,
        x="potus",
        y="word_count",
        title="Average Number of Words in Addresses by President",
        color="categories",
        barmode="group",
    )
    fig2.update_layout(
        xaxis=dict(
            title="President",
            tickangle=-45,  # Rotate labels 45 degrees counterclockwise
        ),
        yaxis=dict(
            title="Average Word Count",
            tickangle=0,  # Default label angle (horizontal)
        ),
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    )
    gr.Markdown(
        """
            Now that we have a little historical context, what does this data look like if we split things out by president? The bar chart below shows the average number of words in each address by president. The bars are grouped by written and spoken addresses.
    """
    )
    gr.Plot(fig2)

    # Create a line chart showing the Automated Readability Index in each address
    with gr.Row():
        ari = df[["potus", "date", "ari", "categories"]]
        fig3 = px.line(
            ari,
            x="date",
            y="ari",
            title="Automated Readability Index in each Address",
            line_shape="spline",
        )
        fig3.update_layout(
            xaxis=dict(title="Date of Address"),
            yaxis=dict(title="ARI Score"),
        )
        gr.Plot(fig3, scale=2)
        gr.Markdown(
            """
                   The line chart to the left shows the Automated Redibility Index (ARI) for each speech by year. The ARI is calculated using the formula: 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43. In general, ARI scores correspond to U.S. grade levels. For example, an ARI of 8.0 corresponds to an 8th grade reading level.

                   While there are other scores that are more representative of attributes we might want to measure, they require values like syllables. The ARI is a simple score to compute with our data. 

                   The drop off is quite noticeable, don't you think? ;) 
            """
        )
    gr.Markdown(
        """
            ## Dive Deeper on Each President

            Use the dropdown to select a president a go a little deeper. 
            
            To begin with, there is an [n-gram](https://en.wikipedia.org/wiki/N-gram) bar chart built from all of the given president's addresses. An n-gram is a contiguous sequence of n items from a given sample of text or speech. Because written and spoken speech is littered with so-called "stop words" such as "and", "the", and "but", we've removed these from the text. 
            
            The slider only goes up to 4-grams because the data is sparse beyond that. I personally found the n-grams from our last three presidents to be less than inspiring and full of platitudes. Earlier presidents have more interesting n-grams.

            Next up is a word cloud of the lemmatized text from the president's addresses. [Lemmatization](https://en.wikipedia.org/wiki/Lemmatization) is the process of grouping together the inflected forms of a word so they can be analyzed as a single item. Think of this as a more advanced version of [stemming](https://en.wikipedia.org/wiki/Stemming) where we can establish novel links between words like "better" and "good" that might otherwise be overlooked in stemming.
            
            You can also see a line chart of word count and ARI for each address.
    """
    )
    # get all unique president names
    presidents = df["potus"].unique()
    # convert presidents to a list
    presidents = presidents.tolist()
    # create a dropdown to select a president
    president = gr.Dropdown(label="Select a President", choices=presidents)
    # create a slider for number of word grams
    grams = gr.Slider(minimum=1, maximum=4, step=1, label="N-grams", interactive=True)

    # show a bar chart of the top n-grams for a selected president
    if president != "All" and president is not None:
        gr.Plot(plotly_ngrams, inputs=[grams, president])

    if president != "All" and president is not None:
        gr.Plot(plt_wordcloud, scale=2, inputs=[president])

    # show a line chart of word count and ARI for a selected president
    if president != "All" and president is not None:
        gr.Plot(plotly_word_and_ari, inputs=[president])


demo.launch(share=True)