sotu-analysis / app.py
jsulz's picture
jsulz HF staff
done with most charts; just need to add words
68b374e
raw
history blame
5.3 kB
import gradio as gr
from datasets import load_dataset
from nltk.util import ngrams
from collections import Counter
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
# Load the dataset and convert it to a Pandas dataframe
sotu_dataset = "jsulz/state-of-the-union-addresses"
dataset = load_dataset(sotu_dataset)
df = dataset["train"].to_pandas()
# decode the tokens-nostop column from a byte array to a list of string
df["tokens-nostop"] = df["tokens-nostop"].apply(
lambda x: x.decode("utf-8")
.replace('"', "")
.replace("[", "")
.replace("]", "")
.split(",")
)
df["word_count"] = df["speech_html"].apply(lambda x: len(x.split()))
# calculate the automated readibility index reading ease score for each address
# automated readability index = 4.71 * (characters/words) + 0.5 * (words/sentences) - 21.43
df["ari"] = df["no-contractions"].apply(
lambda x: (4.71 * (len(x.replace(" ", "")) / len(x.split())))
+ (0.5 * (len(x.split()) / len(x.split("."))))
- 21.43
)
written = df[df["categories"] == "Written"]
spoken = df[df["categories"] == "Spoken"]
# Create a Gradio interface with blocks
with gr.Blocks() as demo:
gr.Markdown(
"""
# A Dashboard to Analyze the State of the Union Addresses
"""
)
gr.BarPlot(
df,
x="date",
y="word_count",
title="Total Number of Words in the Speeches",
color="categories",
)
# group by president and category and calculate the average word count sort by date
avg_word_count = (
df.groupby(["date", "potus", "categories"])["word_count"].mean().reset_index()
)
# create a bar chart
gr.BarPlot(
avg_word_count,
x="potus",
y="word_count",
title="Average Number of Words in the Speeches",
color="categories",
x_label_angle=-45,
height=400,
min_width=160,
fill_height=True,
container=True,
scale=2,
)
with gr.Row():
ari = df[["potus", "date", "ari", "categories"]]
gr.LinePlot(
ari,
x="date",
y="ari",
title="Automated Readability Index",
)
# get all unique president names
presidents = df["potus"].unique()
# convert presidents to a list
presidents = presidents.tolist()
# create a dropdown to select a president
president = gr.Dropdown(label="Select a President", choices=["All"] + presidents)
grams = gr.Slider(minimum=1, maximum=4, step=1, label="N-grams", interactive=True)
with gr.Row():
# if president is not of type string
@gr.render(inputs=president)
def show_text(potus):
if potus != "All" and potus is not None:
ari = df[df["potus"] == potus][
["date", "categories", "word_count", "ari"]
]
gr.DataFrame(ari, height=200)
@gr.render(inputs=president)
def word_length_bar(potus):
# calculate the total number of words in the speech_html column and add it to a new column
# if the president is "All", show the word count for all presidents
# if the president is not "All", show the word count for the selected president
if potus != "All" and potus is not None:
gr.LinePlot(
df[df["potus"] == potus],
x="date",
y="word_count",
title="Total Number of Words in the Speeches",
)
with gr.Row():
@gr.render(inputs=[president, grams])
def ngram_bar(potus, n_grams):
if potus != "All" and potus is not None:
if type(n_grams) is not int:
n_grams = 1
print(n_grams)
# create a Counter object from the trigrams
potus_df = df[df["potus"] == potus]
# decode the tokens-nostop column from a byte array to a list of string
trigrams = (
potus_df["tokens-nostop"]
.apply(lambda x: list(ngrams(x, n_grams)))
.apply(Counter)
.sum()
)
# get the most common trigrams
common_trigrams = trigrams.most_common(20)
# unzip the list of tuples and plot the trigrams and counts as a bar chart
trigrams, counts = zip(*common_trigrams)
# join the trigrams into a single string
trigrams = [" ".join(trigram) for trigram in trigrams]
# create a dataframe from the trigrams and counts
trigrams_df = pd.DataFrame({"trigrams": trigrams, "counts": counts})
# plot the trigrams and counts as a bar chart from matplotlib
fig, ax = plt.subplots(figsize=(12, 4))
ax.barh(trigrams_df["trigrams"], trigrams_df["counts"])
ax.set_title("Top 20 Trigrams")
ax.set_ylabel("Count")
ax.set_xlabel("Trigrams")
plt.xticks(rotation=45)
# make it tight layout
plt.tight_layout()
gr.Plot(value=fig, container=True)
demo.launch()