Spaces:
Sleeping
Sleeping
File size: 9,548 Bytes
b5983bd d0e52bb b5983bd 453eb24 061389d a7f7a4d 81de4d2 453eb24 a7f7a4d d0e52bb b312806 11c6153 453eb24 061389d 11c6153 d0e52bb 16d4314 d0e52bb 68cdf36 d0e52bb e290816 d0e52bb e290816 d0e52bb b5983bd d0e52bb e290816 d0e52bb b5983bd d0e52bb b5983bd e290816 b5983bd e290816 b5983bd e290816 b5983bd e290816 b5983bd d0e52bb e290816 d0e52bb b5983bd e290816 b5983bd d0e52bb b5983bd d0e52bb b5983bd a7f7a4d ee7c3ab a7f7a4d e290816 a7f7a4d b5983bd a7f7a4d 68cdf36 a7f7a4d b5983bd 68cdf36 a7f7a4d b5983bd 68cdf36 a7f7a4d b5983bd e290816 061389d a7f7a4d e290816 b5983bd a7f7a4d e290816 b5983bd a7f7a4d d0e52bb b5983bd 81de4d2 a7f7a4d 061389d ee7c3ab a7f7a4d 061389d 81de4d2 061389d 81de4d2 061389d 453eb24 81de4d2 061389d 81de4d2 453eb24 b312806 453eb24 b312806 81de4d2 061389d 81de4d2 453eb24 b312806 453eb24 b312806 81de4d2 453eb24 81de4d2 453eb24 a7f7a4d 453eb24 a7f7a4d ee7c3ab a7f7a4d 061389d 453eb24 a7f7a4d 061389d a7f7a4d 061389d 453eb24 061389d 453eb24 061389d b312806 453eb24 061389d b312806 061389d b312806 ee7c3ab 453eb24 ee7c3ab 453eb24 81de4d2 453eb24 a7f7a4d d0e52bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from plotly.subplots import make_subplots
from scipy.signal import find_peaks, butter, filtfilt
import plotly.graph_objects as go
from io import StringIO
import pandas as pd
import gradio as gr
import numpy as np
import itertools
import tempfile
import librosa
import random
import mdpd
import os
from utils import getaudiodata, getBeats, plotBeattimes, find_s1s2
example_dir = "Examples"
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
all_pairs = list(itertools.combinations(example_files, 2))
random.shuffle(all_pairs)
example_pairs = [list(pair) for pair in all_pairs[:25]]
def getHRV(beattimes: np.ndarray) -> np.ndarray:
# Calculate instantaneous heart rate
instantaneous_hr = 60 * np.diff(beattimes)
# # Calculate moving average heart rate (e.g., over 10 beats)
# window_size = 10
# moving_avg_hr = np.convolve(instantaneous_hr, np.ones(window_size), 'valid') / window_size
# # Calculate heart rate variability as the difference from the moving average
# hrv = instantaneous_hr[window_size-1:] - moving_avg_hr
return instantaneous_hr
def create_average_heartbeat(audiodata, sr):
# 1. Detect individual heartbeats
onset_env = librosa.onset.onset_strength(y=audiodata, sr=sr)
peaks, _ = find_peaks(onset_env, distance=sr//2) # Assume at least 0.5s between beats
# 2. Extract individual heartbeats
beat_length = sr # Assume 1 second for each beat
beats = []
for peak in peaks:
if peak + beat_length < len(audiodata):
beat = audiodata[peak:peak+beat_length]
beats.append(beat)
# 3. Align and average the beats
if beats:
avg_beat = np.mean(beats, axis=0)
else:
avg_beat = np.array([])
# 4. Create a Plotly figure of the average heartbeat
time = np.arange(len(avg_beat)) / sr
fig = go.Figure()
fig.add_trace(go.Scatter(x=time, y=avg_beat, mode='lines', name='Average Beat'))
fig.update_layout(
title='Average Heartbeat',
xaxis_title='Time (s)',
yaxis_title='Amplitude'
)
return fig, avg_beat
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
def plotCombined(audiodata, sr, filename):
# Get beat times
tempo, beattimes = getBeats(audiodata, sr)
# Create subplots
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.1,
subplot_titles=('Audio Waveform', 'Spectrogram', 'Heart Rate Variability'))
# Time array for the full audio
time = (np.arange(0, len(audiodata)) / sr) * 2
# Waveform plot
fig.add_trace(
go.Scatter(x=time, y=audiodata, mode='lines', name='Waveform', line=dict(color='blue', width=1)),
row=1, col=1
)
# Add beat markers
beat_amplitudes = np.interp(beattimes, time, audiodata)
fig.add_trace(
go.Scatter(x=beattimes, y=beat_amplitudes, mode='markers', name='Beats',
marker=dict(color='red', size=8, symbol='circle')),
row=1, col=1
)
# HRV plot
hrv = getHRV(beattimes)
hrv_time = beattimes[1:len(hrv)+1]
fig.add_trace(
go.Scatter(x=hrv_time, y=hrv, mode='lines', name='HRV', line=dict(color='green', width=1)),
row=3, col=1
)
# Spectrogram plot
n_fft = 2048 # You can adjust this value
hop_length = n_fft // 4 # You can adjust this value
D = librosa.stft(audiodata, n_fft=n_fft, hop_length=hop_length)
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
# Calculate the correct time array for the spectrogram
spec_times = librosa.times_like(S_db, sr=sr, hop_length=hop_length)
freqs = librosa.fft_frequencies(sr=sr, n_fft=n_fft)
fig.add_trace(
go.Heatmap(z=S_db, x=spec_times, y=freqs, colorscale='Viridis',
zmin=S_db.min(), zmax=S_db.max(), colorbar=dict(title='Magnitude (dB)')),
row=2, col=1
)
# Update layout
fig.update_layout(
height=1000,
title_text=filename,
showlegend=False
)
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
fig.update_xaxes(range=[0, len(audiodata)/sr], row=2, col=1)
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
fig.update_yaxes(title_text="HRV", row=3, col=1)
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
return fig
def analyze_single(audio:gr.Audio):
# Extract audio data and sample rate
filepath = audio
filename = filepath.split("/")[-1]
sr, audiodata = getaudiodata(filepath)
# Now you have:
# - audiodata: a 1D numpy array containing the audio samples
# - sr: the sample rate of the audio
# Your analysis code goes here
# For example, you could print basic information:
# print(f"Audio length: {len(audiodata) / sr:.2f} seconds")
# print(f"Sample rate: {sr} Hz")
zcr = librosa.feature.zero_crossing_rate(audiodata)[0]
# print(f"Mean Zero Crossing Rate: {np.mean(zcr):.4f}")
# Calculate RMS Energy
rms = librosa.feature.rms(y=audiodata)[0]
# print(f"Mean RMS Energy: {np.mean(rms):.4f}")
tempo, beattimes = getBeats(audiodata, sr)
spectogram_wave = plotCombined(audiodata, sr, filename)
#beats_histogram = plotbeatscatter(tempo[0], beattimes)
# Add the new average heartbeat analysis
avg_beat_plot, avg_beat = create_average_heartbeat(audiodata, sr)
# Calculate some statistics about the average beat
avg_beat_duration = len(avg_beat) / sr
avg_beat_energy = np.sum(np.square(avg_beat))
# Return your analysis results
results = f"""
Average Heartbeat Analysis:
- Duration: {avg_beat_duration:.3f} seconds
- Energy: {avg_beat_energy:.3f}
- Audio length: {len(audiodata) / sr:.2f} seconds
- Sample rate: {sr} Hz
- Mean Zero Crossing Rate: {np.mean(zcr):.4f}
- Mean RMS Energy: {np.mean(rms):.4f}
- Tempo: {tempo[0]:.4f}
- Beats: {beattimes}
- Beat durations: {np.diff(beattimes)}
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
"""
return results, spectogram_wave, avg_beat_plot
#-----------------------------------------------
#-----------------------------------------------
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS V2
def getBeatsv2(audio:gr.Audio):
sr, audiodata = getaudiodata(audio)
_, beattimes, audiodata = getBeats(audiodata, sr)
beattimes_table = pd.DataFrame(data={"Beattimes":beattimes})
feature_array = find_s1s2(beattimes_table)
featuredf = pd.DataFrame(
data=feature_array,
columns=[
"Beattimes",
"S1 to S2",
"S2 to S1",
"Label (S1=0/S2=1)"]
)
# Create boolean masks for each label
mask_ones = feature_array[:, 3] == 1
mask_zeros = feature_array[:, 3] == 0
# Extract time/positions using the masks
times_label_one = feature_array[mask_ones, 0]
times_label_zero = feature_array[mask_zeros, 0]
fig = plotBeattimes(times_label_one, audiodata, sr, times_label_zero)
return fig, featuredf.to_markdown(), (sr, audiodata)
def updateBeatsv2(beattimes_table:gr.Markdown, audio:gr.Audio, uploadeddf:gr.File=None)-> go.Figure:
df = mdpd.from_md(df)
sr, audiodata = getaudiodata(audio)
if uploadeddf != None:
beattimes_table = pd.read_csv(uploadeddf)
s1_times = beattimes_table[beattimes_table["Label (S1=0/S2=1)"] == 0]["Beattimes"].to_numpy()
s2_times = beattimes_table[beattimes_table["Label (S1=0/S2=1)"] == 1]["Beattimes"].to_numpy()
fig = plotBeattimes(s1_times, audiodata, sr, s2_times)
return fig, beattimes_table.to_markdown()
def download_df (df: str):
df = mdpd.from_md(df)
print(df)
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, "feature_data.csv")
df.to_csv(temp_path, index=False)
return temp_path
with gr.Blocks() as app:
gr.Markdown("# Heartbeat")
gr.Markdown("This App helps to analyze and extract Information from Heartbeat Audios")
audiofile = gr.Audio(
type="filepath",
label="Upload the Audio of a Heartbeat",
sources="upload")
with gr.Tab("Preprocessing"):
getBeatsbtn = gr.Button("get Beats")
cleanedaudio = gr.Audio(label="Cleaned Audio",show_download_button=True)
beats_wave_plot = gr.Plot()
with gr.Row():
with gr.Column():
beattimes_table = gr.Markdown()
with gr.Column():
csv_download = gr.DownloadButton()
updateBeatsbtn = gr.Button("update Beats")
uploadDF = gr.File(
file_count="single",
file_types=[".csv"],
label="upload a csv",
height=25
)
csv_download.click(download_df, inputs=[beattimes_table], outputs=[csv_download])
getBeatsbtn.click(getBeatsv2, inputs=audiofile, outputs=[beats_wave_plot, beattimes_table, cleanedaudio])
updateBeatsbtn.click(updateBeatsv2, inputs=[beattimes_table, audiofile, uploadDF], outputs=[beats_wave_plot, beattimes_table])
gr.Examples(
examples=example_files,
inputs=audiofile,
fn=getBeatsv2,
cache_examples=False
)
with gr.Tab("Analysis"):
gr.Markdown("🚨 Please make sure to first run the 'Preprocessing'")
app.launch() |