Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from diffusion_webui.utils.model_list import stable_model_list | |
from diffusion_webui.utils.scheduler_list import get_scheduler_list | |
class StableDiffusionText2ImageGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model( | |
self, | |
model_path, | |
scheduler, | |
): | |
if self.pipe is None: | |
self.pipe = StableDiffusionPipeline.from_pretrained( | |
model_path, safety_checker=None, torch_dtype=torch.float16 | |
) | |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
return self.pipe | |
def generate_image( | |
self, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
scheduler: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
height: int, | |
width: int, | |
seed_generator=0, | |
): | |
pipe = self.load_model( | |
model_path=model_path, | |
scheduler=scheduler, | |
) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
images = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return images | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
text2image_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Prompt", | |
show_label=False, | |
) | |
text2image_negative_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Negative Prompt", | |
show_label=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text2image_model_path = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Text-Image Model Id", | |
) | |
text2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
text2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
text2image_num_images_per_prompt = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text2image_scheduler = gr.Dropdown( | |
choices=[ | |
"DDIM", | |
"EulerA", | |
"Euler", | |
"LMS", | |
"Heun", | |
], | |
value="DDIM", | |
label="Scheduler", | |
) | |
text2image_height = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Image Height", | |
) | |
text2image_width = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Image Width", | |
) | |
text2image_seed_generator = gr.Slider( | |
label="Seed(0 for random)", | |
minimum=0, | |
maximum=1000000, | |
value=0, | |
) | |
text2image_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2), height=200) | |
text2image_predict.click( | |
fn=StableDiffusionText2ImageGenerator().generate_image, | |
inputs=[ | |
text2image_model_path, | |
text2image_prompt, | |
text2image_negative_prompt, | |
text2image_num_images_per_prompt, | |
text2image_scheduler, | |
text2image_guidance_scale, | |
text2image_num_inference_step, | |
text2image_height, | |
text2image_width, | |
text2image_seed_generator, | |
], | |
outputs=output_image, | |
) | |