Spaces:
Running
Running
from diffusers import ( StableDiffusionControlNetPipeline, | |
ControlNetModel, UniPCMultistepScheduler ) | |
from transformers import pipeline | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
stable_model_list = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2", | |
"stabilityai/stable-diffusion-2-base", | |
"stabilityai/stable-diffusion-2-1", | |
"stabilityai/stable-diffusion-2-1-base" | |
] | |
stable_inpiant_model_list = [ | |
"stabilityai/stable-diffusion-2-inpainting", | |
"runwayml/stable-diffusion-inpainting" | |
] | |
stable_prompt_list = [ | |
"a photo of a man.", | |
"a photo of a girl." | |
] | |
stable_negative_prompt_list = [ | |
"bad, ugly", | |
"deformed" | |
] | |
def controlnet_depth(image_path:str): | |
depth_estimator = pipeline('depth-estimation') | |
image = Image.open(image_path) | |
image = depth_estimator(image)['depth'] | |
image = np.array(image) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16 | |
) | |
return controlnet, image | |
def stable_diffusion_controlnet_depth( | |
image_path:str, | |
model_path:str, | |
prompt:str, | |
negative_prompt:str, | |
guidance_scale:int, | |
num_inference_step:int, | |
): | |
controlnet, image = controlnet_depth(image_path=image_path) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
pretrained_model_name_or_path=model_path, | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16 | |
) | |
pipe.to("cuda") | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt = prompt, | |
image = image, | |
negative_prompt = negative_prompt, | |
num_inference_steps = num_inference_step, | |
guidance_scale = guidance_scale, | |
).images | |
return output[0] | |
def stable_diffusion_controlnet_depth_app(): | |
with gr.Tab('Depth'): | |
controlnet_depth_image_file = gr.Image( | |
type='filepath', | |
label='Image' | |
) | |
controlnet_depth_model_id = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label='Stable Model Id' | |
) | |
controlnet_depth_prompt = gr.Textbox( | |
lines=1, | |
value=stable_prompt_list[0], | |
label='Prompt' | |
) | |
controlnet_depth_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label='Negative Prompt' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
controlnet_depth_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label='Guidance Scale' | |
) | |
controlnet_depth_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label='Num Inference Step' | |
) | |
controlnet_depth_predict = gr.Button(value='Generator') | |
variables = { | |
'image_path': controlnet_depth_image_file, | |
'model_path': controlnet_depth_model_id, | |
'prompt': controlnet_depth_prompt, | |
'negative_prompt': controlnet_depth_negative_prompt, | |
'guidance_scale': controlnet_depth_guidance_scale, | |
'num_inference_step': controlnet_depth_num_inference_step, | |
'predict': controlnet_depth_predict | |
} | |
return variables |