Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
def yolov9_inference(model_path, device, conf_threshold, iou_threshold, img_path, size=640): | |
""" | |
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust | |
the input size and apply test time augmentation. | |
:param model_path: Path to the YOLOv9 model file. | |
:param device: Computation device, 'cpu' or 'cuda'. | |
:param conf_threshold: Confidence threshold for NMS. | |
:param iou_threshold: IoU threshold for NMS. | |
:param img_path: Path to the image file. | |
:param size: Optional, input size for inference. | |
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. | |
""" | |
# Import YOLOv9 | |
import yolov9 | |
# Load the model | |
model = yolov9.load(model_path, device=device) | |
# Set model parameters | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
# Perform inference | |
results = model(img_path, size=size) | |
# Optionally, show detection bounding boxes on image | |
save_path = 'output/' | |
results.save(labels=True, save_dir=save_path) | |
return save_path + 'elon.jpg' | |
inputs = [ | |
gr.Image(label="Input Image"), | |
gr.Dropdown( | |
label="Model", | |
choices=[ | |
"gelan-c.pt", | |
"gelan-e.pt", | |
"yolov9-c.pt", | |
"yolov9-e.pt", | |
], | |
value="gelan-e.pt", | |
), | |
gr.Slider(minimum=320, maximum=1280, value=1280, step=32, label="Image Size"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.Image(type="filepath", label="Output Image") | |
title = "YOLOv9" | |
demo_app = gr.Interface( | |
fn=yolov9_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
) | |
demo_app.launch(debug=True) |