CoralHealth / app.py
kamau1's picture
Update app.py
c62b67e
raw
history blame
871 Bytes
import gradio as gr
import tensorflow as tf
import glob
import numpy
from PIL import Image
model_path = "models"
model = tf.saved_model.load(model_path)
classes = [ "bleached" , "healthy" , ]
def run(image_path):
img = Image.open(i).convert('RGB')
img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS)
inp_numpy = np.array(img)[None]
inp = tf.constant(inp_numpy, dtype='float32')
class_scores = model(inp)[0].numpy()
state = classes[class_scores.argmax()]
return state
title = "Trash Detector"
description = (
""
)
examples = glob.glob("images/*.png")
interface = gr.Interface(
run,
inputs=[gr.components.Image(type="filepath")],
outputs="text",
#outputs=gradio.outputs.Label(num_top_classes=3),
title=title,
description=description,
examples=examples,
)
interface.queue().launch()