Spaces:
Runtime error
Runtime error
1. silence layer
Usage:
[silence]
PyTorch code:
class Silence(nn.Module):
def __init__(self):
super(Silence, self).__init__()
def forward(self, x):
return x
2. implicit_add layer
Usage:
[implicit_add]
filters=128
PyTorch code:
class ImplicitA(nn.Module):
def __init__(self, channel):
super(ImplicitA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
3. shift_channels layer
Usage:
[shift_channels]
from=101
PyTorch code:
class ShiftChannel(nn.Module):
def __init__(self, layers):
super(ShiftChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) + x
4. implicit_mul layer
Usage:
[implicit_mul]
filters=128
PyTorch code:
class ImplicitM(nn.Module):
def __init__(self, channel):
super(ImplicitM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit
5. control_channels layer
Usage:
[control_channels]
from=101
PyTorch code:
class ControlChannel(nn.Module):
def __init__(self, layers):
super(ControlChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) * x
6. implicit_cat layer
Usage:
[implicit_cat]
filters=128
PyTorch code: (same as ImplicitA)
class ImplicitC(nn.Module):
def __init__(self, channel):
super(ImplicitC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
7. alternate_channels layer
Usage:
[alternate_channels]
from=101
PyTorch code:
class AlternateChannel(nn.Module):
def __init__(self, layers):
super(AlternateChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return torch.cat([a.expand_as(x), x], dim=1)
8. implicit_add_2d layer
Usage:
[implicit_add_2d]
filters=128
atoms=128
PyTorch code:
class Implicit2DA(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
9. shift_channels_2d layer
Usage:
[shift_channels_2d]
from=101
PyTorch code:
class ShiftChannel2D(nn.Module):
def __init__(self, layers):
super(ShiftChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) + x
10. implicit_mul_2d layer
Usage:
[implicit_mul_2d]
filters=128
atoms=128
PyTorch code:
class Implicit2DM(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit
11. control_channels_2d layer
Usage:
[control_channels_2d]
from=101
PyTorch code:
class ControlChannel2D(nn.Module):
def __init__(self, layers):
super(ControlChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) * x
12. implicit_cat_2d layer
Usage:
[implicit_cat_2d]
filters=128
atoms=128
PyTorch code: (same as Implicit2DA)
class Implicit2DC(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
13. alternate_channels_2d layer
Usage:
[alternate_channels_2d]
from=101
PyTorch code:
class AlternateChannel2D(nn.Module):
def __init__(self, layers):
super(AlternateChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return torch.cat([a.expand_as(x), x], dim=1)
14. dwt layer
Usage:
[dwt]
PyTorch code:
# https://github.com/fbcotter/pytorch_wavelets
from pytorch_wavelets import DWTForward, DWTInverse
class DWT(nn.Module):
def __init__(self):
super(DWT, self).__init__()
self.xfm = DWTForward(J=1, wave='db1', mode='zero')
def forward(self, x):
b,c,w,h = x.shape
yl, yh = self.xfm(x)
return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1)