karthi311's picture
Update app.py
0c5cf49 verified
raw
history blame
2.17 kB
import gradio as gr
from transformers import pipeline
# Load the summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Use the grammar correction model via pipeline
grammar_correction_pipe = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")
# Function for grammar correction
def correct_grammar(user_input):
if user_input.strip():
corrected_text = grammar_correction_pipe(user_input)[0]['generated_text']
return corrected_text
else:
return "Please enter some text for grammar correction."
# Function for text summarization
def summarize_text(user_input):
if user_input.strip():
summary = summarizer(user_input, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return summary
else:
return "Please enter some text to summarize."
# Function to combine grammar correction and summarization
def correct_and_summarize(user_input):
corrected_text = correct_grammar(user_input) # First correct the grammar
summary = summarize_text(corrected_text) # Then summarize the corrected text
return summary
# Gradio UI setup
with gr.Blocks() as demo:
gr.Markdown("## Text Summarization and Grammar Correction Assistant")
# Dropdown to select task
task = gr.Dropdown(choices=["Summarize Text", "Correct Grammar"], label="Choose a task")
# Input component for text
user_input = gr.Textbox(label="Enter your text here:")
# Output box for displaying the result
output = gr.Textbox(label="Output", interactive=False)
# Submit button
submit_btn = gr.Button("Submit")
# Function to process the input based on selected task
def process_input(task, user_input):
if task == "Summarize Text":
return correct_and_summarize(user_input) # Correct grammar, then summarize
elif task == "Correct Grammar":
return correct_grammar(user_input) # Only correct grammar
# Link the submit button to process the input
submit_btn.click(process_input, inputs=[task, user_input], outputs=output)
# Launch the Gradio interface
demo.launch()