Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer | |
from peft import LoraConfig, get_peft_model | |
from datasets import load_dataset | |
import gradio as gr | |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME === | |
MODEL_NAME = "mistralai/Mistral-7B-v0.1" # Hugging Face model adı | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# === 2️⃣ CPU OPTİMİZASYONU === | |
torch_dtype = torch.float32 # CPU için uygun dtype | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype) | |
# === 3️⃣ LoRA AYARLARI === | |
lora_config = LoraConfig( | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
bias="none", | |
target_modules=["q_proj", "v_proj"], | |
) | |
model = get_peft_model(model, lora_config) | |
# === 4️⃣ VERİ SETİ === | |
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # trust_remote_code=True | |
subset = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset seçiyoruz (10.000 örnek) | |
# === 5️⃣ TOKENLEŞTİRME FONKSİYONU === | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, max_length=512) | |
tokenized_datasets = subset.map(tokenize_function, batched=True) | |
# === 6️⃣ EĞİTİM AYARLARI === | |
# Eğitimde kaç adım olduğunu hesaplayalım | |
train_size = len(tokenized_datasets) # 10,000 örnek | |
batch_size = 1 # Batch size 1 | |
num_epochs = 1 # 1 epoch eğitimi | |
max_steps = (train_size // batch_size) * num_epochs # max_steps hesapla | |
training_args = TrainingArguments( | |
output_dir="./mistral_lora", | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=16, | |
learning_rate=5e-4, | |
num_train_epochs=1, | |
max_steps=max_steps, # Buraya max_steps parametresini ekliyoruz | |
save_steps=500, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
optim="adamw_torch", | |
no_cuda=True, # GPU kullanılmıyor | |
) | |
# === 7️⃣ MODEL EĞİTİMİ === | |
def train_model(): | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
) | |
trainer.train() | |
train_model() # Eğitimi başlat | |