Spaces:
Runtime error
Runtime error
File size: 12,357 Bytes
73b906e ed93dfc 73b906e f036671 2cce248 fe5ca43 36d2951 2cce248 f036671 36d2951 e9cf21b f036671 36d2951 f036671 e9cf21b f036671 2cce248 f036671 36d2951 f036671 73b906e f036671 73b906e f3782dc 73b906e ad29403 73b906e ad29403 73b906e ad29403 73b906e ad29403 73b906e ad29403 73b906e ad29403 ed93dfc ad29403 ed93dfc ad29403 ed93dfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#################################################################################################
# Taking code from https://huggingface.co/spaces/vumichien/Whisper_speaker_diarization/blob/main/app.py
from faster_whisper import WhisperModel
#import datetime
#import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
#import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
#from pytube import YouTube
#import yt_dlp
import torch
#import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
import whisperx
import gc
def doWhisperX(audio_file, whisper_model="large-v2", language="es"):
if language == "Cualquiera":
language = None
device = "cuda" if torch.cuda.is_available() else "cpu"
#audio_file = "audio.mp3"
batch_size = 16 # reduce if low on GPU mem
compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy)
# 1. Transcribe with original whisper (batched)
model = whisperx.load_model(whisper_model, device, compute_type=compute_type)
audio = whisperx.load_audio(audio_file)
result_whisper = model.transcribe(audio, language=language, batch_size=batch_size)
#print(result_whisper["segments"]) # before alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
# 2. Align whisper output
model_a, metadata = whisperx.load_align_model(language_code=result_whisper["language"], device=device)
result_aligned = whisperx.align(result_whisper["segments"], model_a, metadata, audio, device, return_char_alignments=False)
#print(result_aligned) # after alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
# 3. Assign speaker labels
diarize_model = whisperx.DiarizationPipeline(use_auth_token=os.environ['HF_TOKEN'], device=device)
# add min/max number of speakers if known
diarize_segments = diarize_model(audio)
# diarize_model(audio, min_speakers=min_speakers, max_speakers=max_speakers)
result_speakers = whisperx.assign_word_speakers(diarize_segments, result_aligned)
#print(diarize_segments)
#print(result["segments"]) # segments are now assigned speaker IDs
return result_whisper, result_aligned, result_speakers, diarize_segments
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def fast_transcription(audio_file, whisper_model, language):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
# if(video_file_path == None):
# raise ValueError("Error no video input")
# print(video_file_path)
try:
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=language, beam_size=5, best_of=5, word_timestamps=True)
transcribe_options = dict(task="transcribe", **options)
segments_generator, info = model.transcribe(audio_file, **transcribe_options)
#segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# # Convert back to original openai format
# segments = []
# i = 0
# for segment_chunk in segments_raw:
# chunk = {}
# chunk["start"] = segment_chunk.start
# chunk["end"] = segment_chunk.end
# chunk["text"] = segment_chunk.text
# segments.append(chunk)
# i += 1
# print("transcribe audio done with fast whisper")
segments = []
for segment in segments_generator:
segments.append(segment)
# if progress_listener is not None:
# progress_listener.on_progress(segment.end, info.duration)
# if verbose:
# print("[{}->{}] {}".format(format_timestamp(segment.start, True), format_timestamp(segment.end, True),
# segment.text))
text = " ".join([segment.text for segment in segments])
# Convert the segments to a format that is easier to serialize
whisper_segments = [{
"text": segment.text,
"start": segment.start,
"end": segment.end,
# Extra fields added by faster-whisper
"words": [{
"start": word.start,
"end": word.end,
"word": word.word,
"probability": word.probability
} for word in (segment.words if segment.words is not None else []) ]
} for segment in segments]
result = {
"segments": whisper_segments,
"text": text,
"language": info.language if info else None,
# Extra fields added by faster-whisper
"language_probability": info.language_probability if info else None,
"duration": info.duration if info else None
}
except Exception as e:
raise RuntimeError("Error converting video to audio")
#text from the list
return result
#return [str(s["start"]) + " " + s["text"] for s in segments] #pd.DataFrame(segments)
import datetime
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def speech_to_text(audio_file, selected_source_lang, whisper_model, num_speakers):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
# if(video_file_path == None):
# raise ValueError("Error no video input")
# print(video_file_path)
try:
# # Read and convert youtube video
# _,file_ending = os.path.splitext(f'{video_file_path}')
# print(f'file enging is {file_ending}')
# audio_file = video_file_path.replace(file_ending, ".wav")
# print("starting conversion to wav")
# os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
segments.append(chunk)
i += 1
print("transcribe audio done with fast whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
save_path = "transcript_result.csv"
df_results = pd.DataFrame(objects)
#df_results.to_csv(save_path)
return df_results, system_info, save_path
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
# #######################################################################
# def fast_whisper(audio_file, whisper_model="large_v2", language="es"):
# return out |