Spaces:
No application file
No application file
# dataset settings | |
dataset_type = 'ScanNetSegDataset' | |
data_root = './data/scannet/' | |
class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', | |
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', | |
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', | |
'bathtub', 'otherfurniture') | |
num_points = 8192 | |
train_pipeline = [ | |
dict( | |
type='LoadPointsFromFile', | |
coord_type='DEPTH', | |
shift_height=False, | |
use_color=True, | |
load_dim=6, | |
use_dim=[0, 1, 2, 3, 4, 5]), | |
dict( | |
type='LoadAnnotations3D', | |
with_bbox_3d=False, | |
with_label_3d=False, | |
with_mask_3d=False, | |
with_seg_3d=True), | |
dict( | |
type='PointSegClassMapping', | |
valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, | |
33, 34, 36, 39), | |
max_cat_id=40), | |
dict( | |
type='IndoorPatchPointSample', | |
num_points=num_points, | |
block_size=1.5, | |
ignore_index=len(class_names), | |
use_normalized_coord=False, | |
enlarge_size=0.2, | |
min_unique_num=None), | |
dict(type='NormalizePointsColor', color_mean=None), | |
dict(type='DefaultFormatBundle3D', class_names=class_names), | |
dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) | |
] | |
test_pipeline = [ | |
dict( | |
type='LoadPointsFromFile', | |
coord_type='DEPTH', | |
shift_height=False, | |
use_color=True, | |
load_dim=6, | |
use_dim=[0, 1, 2, 3, 4, 5]), | |
dict(type='NormalizePointsColor', color_mean=None), | |
dict( | |
# a wrapper in order to successfully call test function | |
# actually we don't perform test-time-aug | |
type='MultiScaleFlipAug3D', | |
img_scale=(1333, 800), | |
pts_scale_ratio=1, | |
flip=False, | |
transforms=[ | |
dict( | |
type='GlobalRotScaleTrans', | |
rot_range=[0, 0], | |
scale_ratio_range=[1., 1.], | |
translation_std=[0, 0, 0]), | |
dict( | |
type='RandomFlip3D', | |
sync_2d=False, | |
flip_ratio_bev_horizontal=0.0, | |
flip_ratio_bev_vertical=0.0), | |
dict( | |
type='DefaultFormatBundle3D', | |
class_names=class_names, | |
with_label=False), | |
dict(type='Collect3D', keys=['points']) | |
]) | |
] | |
# construct a pipeline for data and gt loading in show function | |
# please keep its loading function consistent with test_pipeline (e.g. client) | |
# we need to load gt seg_mask! | |
eval_pipeline = [ | |
dict( | |
type='LoadPointsFromFile', | |
coord_type='DEPTH', | |
shift_height=False, | |
use_color=True, | |
load_dim=6, | |
use_dim=[0, 1, 2, 3, 4, 5]), | |
dict( | |
type='LoadAnnotations3D', | |
with_bbox_3d=False, | |
with_label_3d=False, | |
with_mask_3d=False, | |
with_seg_3d=True), | |
dict( | |
type='PointSegClassMapping', | |
valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, | |
33, 34, 36, 39), | |
max_cat_id=40), | |
dict( | |
type='DefaultFormatBundle3D', | |
with_label=False, | |
class_names=class_names), | |
dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) | |
] | |
data = dict( | |
samples_per_gpu=8, | |
workers_per_gpu=4, | |
train=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file=data_root + 'scannet_infos_train.pkl', | |
pipeline=train_pipeline, | |
classes=class_names, | |
test_mode=False, | |
ignore_index=len(class_names), | |
scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy'), | |
val=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file=data_root + 'scannet_infos_val.pkl', | |
pipeline=test_pipeline, | |
classes=class_names, | |
test_mode=True, | |
ignore_index=len(class_names)), | |
test=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file=data_root + 'scannet_infos_val.pkl', | |
pipeline=test_pipeline, | |
classes=class_names, | |
test_mode=True, | |
ignore_index=len(class_names))) | |
evaluation = dict(pipeline=eval_pipeline) | |