kavaliha's picture
up
17680f1 verified
raw
history blame
4.68 kB
# dataset settings
# D5 in the config name means the whole dataset is divided into 5 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://waymo_data/'))
class_names = ['Car']
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'waymo_dbinfos_train.pkl',
rate=1.0,
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
classes=class_names,
sample_groups=dict(Car=15),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=[0, 1, 2, 3, 4],
file_client_args=file_client_args))
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=6,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
file_client_args=file_client_args),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=6,
use_dim=5,
file_client_args=file_client_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=6,
use_dim=5,
file_client_args=file_client_args),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'waymo_infos_train.pkl',
split='training',
pipeline=train_pipeline,
modality=input_modality,
classes=class_names,
test_mode=False,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR',
# load one frame every five frames
load_interval=5)),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'waymo_infos_val.pkl',
split='training',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True,
box_type_3d='LiDAR'),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'waymo_infos_val.pkl',
split='training',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True,
box_type_3d='LiDAR'))
evaluation = dict(interval=24, pipeline=eval_pipeline)