Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from langchain.memory import ConversationBufferMemory | |
import torch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load all three Flan-T5 models (small, base, large) | |
models = { | |
"small": T5ForConditionalGeneration.from_pretrained("google/flan-t5-small").to(device), | |
"base": T5ForConditionalGeneration.from_pretrained("google/flan-t5-base").to(device), | |
"large": T5ForConditionalGeneration.from_pretrained("google/flan-t5-large").to(device) | |
} | |
# Load the tokenizer (same tokenizer for all models) | |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") | |
# Set up conversational memory using LangChain's ConversationBufferMemory | |
memory = ConversationBufferMemory() | |
# Define the chatbot function with memory and model size selection | |
def chat_with_flan(input_text, model_size): | |
# Retrieve conversation history and append the current user input | |
conversation_history = memory.load_memory_variables({})['history'] | |
# Combine the history with the current user input | |
full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:" | |
# Tokenize the input for the model | |
input_ids = tokenizer.encode(full_input, return_tensors="pt") | |
# Get the model based on the selected size | |
model = models[model_size] | |
# Generate the response from the model | |
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1) | |
# Decode the model output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Update the memory with the user input and model response | |
memory.save_context({"input": input_text}, {"output": response}) | |
return conversation_history + f"\nUser: {input_text}\nAssistant: {response}" | |
# Set up the Gradio interface with the input box below the output box | |
with gr.Blocks() as interface: | |
chatbot_output = gr.Textbox(label="Conversation", lines=15, placeholder="Chat history will appear here...", interactive=False) | |
# Add the instruction message above the input box | |
gr.Markdown("**Instructions:** Press `Shift + Enter` to submit, and `Enter` for a new line.") | |
# Add a dropdown for selecting the model size (small, base, large) | |
model_selector = gr.Dropdown(choices=["small", "base", "large"], value="base", label="Select Model Size") | |
# Input box for the user | |
user_input = gr.Textbox(label="Your Input", placeholder="Type your message here...", lines=2, show_label=True) | |
# Define the function to update the chat based on selected model | |
def update_chat(input_text, model_size): | |
updated_history = chat_with_flan(input_text, model_size) | |
return updated_history, "" | |
# Submit when pressing Enter | |
user_input.submit(update_chat, inputs=[user_input, model_selector], outputs=[chatbot_output, user_input]) | |
# Layout for model selector and chatbot UI | |
gr.Row([model_selector]) | |
# Launch the Gradio app | |
interface.launch() | |