Spaces:
Runtime error
Runtime error
File size: 10,522 Bytes
2c5347a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import argparse
import json
import logging
import os
import pathlib
import random
import shutil
import sys
import time
from ast import literal_eval
from shutil import rmtree
from typing import Any, Dict, List, Union
import numpy as np
import pandas as pd
import ray
from sklearn.feature_extraction.text import (CountVectorizer, HashingVectorizer, TfidfVectorizer)
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from lr.hyperparameters import (SEARCH_SPACE, HyperparameterSearch,
RandomSearch)
from lr.util import jackknife, replace_bool, stratified_sample
# Create a custom logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def train_lr(train,
dev,
test,
search_space):
master = pd.concat([train, dev], 0)
space = HyperparameterSearch(**search_space)
sample = space.sample()
if sample.pop('stopwords') == 1:
stop_words = 'english'
else:
stop_words = None
weight = sample.pop('weight')
if weight == 'binary':
binary = True
else:
binary = False
ngram_range = sample.pop('ngram_range')
ngram_range = sorted([int(x) for x in ngram_range.split()])
if weight == 'tf-idf':
vect = TfidfVectorizer(stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
elif weight == 'hash':
vect = HashingVectorizer(stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
else:
vect = CountVectorizer(binary=binary,
stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
start = time.time()
vect.fit(tqdm(master.text, desc="fitting data", leave=False))
X_train = vect.transform(tqdm(train.text, desc="transforming training data", leave=False))
X_dev = vect.transform(tqdm(dev.text, desc="transforming dev data", leave=False))
if test is not None:
X_test = vect.transform(tqdm(test.text, desc="transforming test data", leave=False))
sample['C'] = float(sample['C'])
sample['tol'] = float(sample['tol'])
classifier = LogisticRegression(**sample, verbose=True)
classifier.fit(X_train, train.label)
end = time.time()
for k, v in sample.items():
if not v:
v = str(v)
sample[k] = [v]
res = pd.DataFrame(sample)
preds = classifier.predict(X_dev)
if test is not None:
test_preds = classifier.predict(X_test)
res['dev_f1'] = f1_score(dev.label, preds, average='macro')
if test is not None:
res['test_f1'] = f1_score(test.label, test_preds, average='macro')
res['dev_accuracy'] = classifier.score(X_dev, dev.label)
if test is not None:
res['test_accuracy'] = classifier.score(X_test, test.label)
res['training_duration'] = end - start
res['ngram_range'] = str(ngram_range)
res['weight'] = weight
res['stopwords'] = stop_words
return classifier, vect, res
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train_file', type=str)
parser.add_argument('--dev_file', type=str, required=False)
parser.add_argument('--test_file', type=str, required=False)
parser.add_argument('--search_trials', type=int, default=5)
parser.add_argument('--train_subsample', type=int, required=False)
parser.add_argument('--stratified', action='store_true')
parser.add_argument('--jackknife_partitions', type=int, default=5, required=False)
parser.add_argument('--save_jackknife_partitions', action='store_true')
parser.add_argument('--serialization_dir', '-s', type=str)
parser.add_argument('--override', '-o', action='store_true')
parser.add_argument('--evaluate_on_test', '-t', action='store_true')
args = parser.parse_args()
if not os.path.isdir(args.serialization_dir):
os.makedirs(args.serialization_dir)
else:
if args.override:
rmtree(args.serialization_dir)
os.makedirs(args.serialization_dir)
else:
print(f"serialization directory {args.serialization_dir} exists. Aborting! ")
print(f"reading training data at {args.train_file}...")
train = pd.read_json(args.train_file, lines=True)
if args.train_subsample:
if args.stratified:
train = stratified_sample(train, "label", args.train_subsample)
else:
train = train.sample(n=args.train_subsample)
if args.dev_file:
print(f"reading dev data at {args.dev_file}...")
dev = pd.read_json(args.dev_file, lines=True)
else:
print("Dev file not provided, will jackknife training data...")
if args.evaluate_on_test:
if args.test_file:
print(f"reading test data at {args.test_file}...")
test = pd.read_json(args.test_file, lines=True)
else:
print("Test file not provided.")
sys.exit(1)
else:
test = None
num_assignments = args.search_trials
num_partitions = args.jackknife_partitions
df = pd.DataFrame()
current_f1 = 0.0
best_classifier = None
best_vect = None
if args.dev_file:
pbar = tqdm(range(num_assignments), desc="search trials", leave=False)
for i in pbar:
try:
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
df = pd.concat([df, res], 0, sort=True)
best_f1 = df.dev_f1.max()
if res.dev_f1[0] > current_f1:
current_f1 = res.dev_f1[0]
best_classifier = classifier
best_vect = vect
pbar.set_description(f"mean +- std dev F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}, max F1: {df.dev_f1.max()}")
except KeyboardInterrupt:
break
else:
if args.save_jackknife_partitions:
if not os.path.isdir(os.path.join(args.serialization_dir, "jackknife")):
os.mkdir(os.path.join(args.serialization_dir, "jackknife"))
for ix, (train, dev) in tqdm(enumerate(jackknife(train, num_partitions=num_partitions)),
total=num_partitions,
leave=False,
desc="jackknife partitions"):
for i in tqdm(range(num_assignments), desc="search trials", leave=False):
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
df = pd.concat([df, res], 0, sort=True)
best_f1 = df.dev_f1.max()
if res.dev_f1[0] > current_f1:
current_f1 = res.dev_f1[0]
best_classifier = classifier
best_vect = vect
df['dataset_reader.sample'] = train.shape[0]
df['model.encoder.architecture.type'] = 'logistic regression'
if args.save_jackknife_partitions:
train.to_json(
os.path.join(args.serialization_dir,
"jackknife",
f"train.{ix}"),
lines=True,
orient="records")
dev.to_json(os.path.join(args.serialization_dir,
"jackknife",
f"dev.{ix}"),
lines=True,
orient='records')
print("DEV STATISTICS")
print("================")
print(f"mean +- std F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}")
print(f"max F1: {df.dev_f1.max()}")
print(f"min F1: {df.dev_f1.min()}")
print(f"mean +- std accuracy: {df.dev_accuracy.mean()} +- {df.dev_accuracy.std()}")
print(f"max accuracy: {df.dev_accuracy.max()}")
print(f"min accuracy: {df.dev_accuracy.min()}")
print("")
print("BEST HYPERPARAMETERS")
print(f"=====================")
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
print(df.reset_index().iloc[df.reset_index().dev_f1.idxmax()])
if test is not None:
print("TEST STATISTICS")
print("================")
print(f"mean +- std F1: {df.test_f1.mean()} +- {df.test_f1.std()}")
print(f"max F1: {df.test_f1.max()}")
print(f"min F1: {df.test_f1.min()}")
print(f"mean +- std accuracy: {df.test_accuracy.mean()} +- {df.test_accuracy.std()}")
print(f"max accuracy: {df.test_accuracy.max()}")
print(f"min accuracy: {df.test_accuracy.min()}")
df.to_json(os.path.join(args.serialization_dir, "results.jsonl"), lines=True, orient='records')
with open(os.path.join(args.serialization_dir, "best_hyperparameters.json"), "w+") as f:
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
for k,v in best_hp.items():
if isinstance(v, np.int64):
best_hp[k] = int(v)
if isinstance(v, str) and "[" in v:
v = literal_eval(v)
best_hp[k] = f"{v[0]} {v[1]}"
best_hp.pop("index")
best_hp.pop("dev_accuracy")
best_hp.pop("dev_f1")
if test is not None:
best_hp.pop("test_accuracy")
best_hp.pop("test_f1")
best_hp.pop("training_duration")
json.dump(best_hp, f)
with open(os.path.join(args.serialization_dir, "vocab.json"), 'w+') as f:
for k,v in best_vect.__dict__['vocabulary_'].items():
best_vect.__dict__['vocabulary_'][k] = int(v)
json.dump(best_vect.__dict__['vocabulary_'], f)
os.mkdir(os.path.join(args.serialization_dir, "archive"))
try:
np.save(os.path.join(args.serialization_dir, "archive", "idf.npy"), best_vect.idf_)
except:
pass
np.save(os.path.join(args.serialization_dir, "archive", "classes.npy"),best_classifier.classes_)
np.save(os.path.join(args.serialization_dir, "archive", "coef.npy"),best_classifier.coef_)
np.save(os.path.join(args.serialization_dir, "archive", "intercept.npy"), best_classifier.intercept_) |