Spaces:
Running
Running
import torch | |
import numpy as np | |
import re | |
import soundfile | |
import utils | |
import commons | |
import os | |
import librosa | |
from text import text_to_sequence | |
from mel_processing import spectrogram_torch | |
from models import SynthesizerTrn | |
class OpenVoiceBaseClass(object): | |
def __init__(self, | |
config_path, | |
device='cuda:0'): | |
if 'cuda' in device: | |
assert torch.cuda.is_available() | |
hps = utils.get_hparams_from_file(config_path) | |
model = SynthesizerTrn( | |
len(getattr(hps, 'symbols', [])), | |
hps.data.filter_length // 2 + 1, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
model.eval() | |
self.model = model | |
self.hps = hps | |
self.device = device | |
def load_ckpt(self, ckpt_path): | |
checkpoint_dict = torch.load(ckpt_path) | |
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False) | |
print("Loaded checkpoint '{}'".format(ckpt_path)) | |
print('missing/unexpected keys:', a, b) | |
class BaseSpeakerTTS(OpenVoiceBaseClass): | |
language_marks = { | |
"english": "EN", | |
"chinese": "ZH", | |
} | |
def get_text(text, hps, is_symbol): | |
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def audio_numpy_concat(segment_data_list, sr, speed=1.): | |
audio_segments = [] | |
for segment_data in segment_data_list: | |
audio_segments += segment_data.reshape(-1).tolist() | |
audio_segments += [0] * int((sr * 0.05)/speed) | |
audio_segments = np.array(audio_segments).astype(np.float32) | |
return audio_segments | |
def split_sentences_into_pieces(text, language_str): | |
texts = utils.split_sentence(text, language_str=language_str) | |
print(" > Text splitted to sentences.") | |
print('\n'.join(texts)) | |
print(" > ===========================") | |
return texts | |
def tts(self, text, output_path, speaker, language='English', speed=1.0): | |
mark = self.language_marks.get(language.lower(), None) | |
assert mark is not None, f"language {language} is not supported" | |
texts = self.split_sentences_into_pieces(text, mark) | |
audio_list = [] | |
for t in texts: | |
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t) | |
t = f'[{mark}]{t}[{mark}]' | |
stn_tst = self.get_text(t, self.hps, False) | |
device = self.device | |
speaker_id = self.hps.speakers[speaker] | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) | |
sid = torch.LongTensor([speaker_id]).to(device) | |
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6, | |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() | |
audio_list.append(audio) | |
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed) | |
if output_path is None: | |
return audio | |
else: | |
soundfile.write(output_path, audio, self.hps.data.sampling_rate) | |
class ToneColorConverter(OpenVoiceBaseClass): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if kwargs.get('enable_watermark', True): | |
import wavmark | |
self.watermark_model = wavmark.load_model().to(self.device) | |
else: | |
self.watermark_model = None | |
def extract_se(self, ref_wav_list, se_save_path=None): | |
if isinstance(ref_wav_list, str): | |
ref_wav_list = [ref_wav_list] | |
device = self.device | |
hps = self.hps | |
gs = [] | |
for fname in ref_wav_list: | |
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate) | |
y = torch.FloatTensor(audio_ref) | |
y = y.to(device) | |
y = y.unsqueeze(0) | |
y = spectrogram_torch(y, hps.data.filter_length, | |
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, | |
center=False).to(device) | |
with torch.no_grad(): | |
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1) | |
gs.append(g.detach()) | |
gs = torch.stack(gs).mean(0) | |
if se_save_path is not None: | |
os.makedirs(os.path.dirname(se_save_path), exist_ok=True) | |
torch.save(gs.cpu(), se_save_path) | |
return gs | |
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"): | |
hps = self.hps | |
# load audio | |
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate) | |
audio = torch.tensor(audio).float() | |
with torch.no_grad(): | |
y = torch.FloatTensor(audio).to(self.device) | |
y = y.unsqueeze(0) | |
spec = spectrogram_torch(y, hps.data.filter_length, | |
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, | |
center=False).to(self.device) | |
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device) | |
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][ | |
0, 0].data.cpu().float().numpy() | |
audio = self.add_watermark(audio, message) | |
if output_path is None: | |
return audio | |
else: | |
soundfile.write(output_path, audio, hps.data.sampling_rate) | |
def add_watermark(self, audio, message): | |
if self.watermark_model is None: | |
return audio | |
device = self.device | |
bits = utils.string_to_bits(message).reshape(-1) | |
n_repeat = len(bits) // 32 | |
K = 16000 | |
coeff = 2 | |
for n in range(n_repeat): | |
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K] | |
if len(trunck) != K: | |
print('Audio too short, fail to add watermark') | |
break | |
message_npy = bits[n * 32: (n + 1) * 32] | |
with torch.no_grad(): | |
signal = torch.FloatTensor(trunck).to(device)[None] | |
message_tensor = torch.FloatTensor(message_npy).to(device)[None] | |
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor) | |
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze() | |
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy | |
return audio | |
def detect_watermark(self, audio, n_repeat): | |
bits = [] | |
K = 16000 | |
coeff = 2 | |
for n in range(n_repeat): | |
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K] | |
if len(trunck) != K: | |
print('Audio too short, fail to detect watermark') | |
return 'Fail' | |
with torch.no_grad(): | |
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0) | |
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze() | |
bits.append(message_decoded_npy) | |
bits = np.stack(bits).reshape(-1, 8) | |
message = utils.bits_to_string(bits) | |
return message | |