killwithabass's picture
Update app.py
582c2e7 verified
import gradio as gr
import json
import logging
import torch
from PIL import Image, PngImagePlugin
import spaces
from diffusers import DiffusionPipeline
from transformers.utils.hub import move_cache
import copy
import random
import os
import pygsheets
import time
from datetime import datetime
# Move cache
move_cache()
# Initialize GSheet Connexion
#Authorization
gc = pygsheets.authorize(service_account_env_var='GSHEET_AUTH')
#Open the google spreadsheet
sh = gc.open('AndroFLUX-Logs')
#Select the second sheet
wks = sh[1]
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU(duration=90)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
max_sequence_length=512
).images[0]
# Save the image to a file with a unique name in /tmp directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_filename = f"generated_image_{timestamp}.png"
#create temp directory if not exist
newpath = r'/tmp/gradio'
if not os.path.exists(newpath):
os.makedirs(newpath)
image_path = os.path.join("/tmp/gradio", image_filename)
# Add Metadata
new_metadata_string = f"{prompt}\nNegative prompt: none \nSteps: {steps}, CFG scale: {cfg_scale}, Seed: {seed}, Lora hashes: AndroFlux-v19: c44afd41ece1"
metadata = PngImagePlugin.PngInfo()
metadata.add_text("parameters", new_metadata_string)
#Save image in file
image.save(image_path, pnginfo=metadata)
# Construct the URL to access the image
space_url = "https://killwithabass-flux-gay-lora-explorer.hf.space/gradio_api"
image_url = f"{space_url}/file={image_path}"
#Log queries
try:
if "girl" not in prompt and "woman" not in prompt:
wks.append_table(values=[prompt, cfg_scale, steps, seed, width, height, lora_scale,image_url])
except Exception as error:
# handle the exception
print("An exception occurred:", error)
print(f"Image URL: {image_url}") # Log the file URL
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
print("Model : " + selected_lora["title"] + " Prompt : " + prompt)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center;}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
gr.Markdown("# Gay LoRAs Explorer for FLUX 1 DEV")
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
with gr.Accordion("LoRA Gallery", open=False):
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRAs",
allow_preview=False,
columns=3
)
gr.Markdown("*You can add more models by creating a Pull Request to modify the file loras.json*")
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=896)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1152)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
gallery.select(
update_selection,
outputs=[prompt, selected_info, selected_index]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue()
app.launch()