savtadepth / src /code /custom_data_loading.py
Dean
First finalized pipeline
7200298
raw
history blame
2.17 kB
import yaml
from fastai.vision.all import \
DataLoaders, \
delegates, \
DataBlock, \
ImageBlock, \
PILImage, \
PILImageBW, \
RandomSplitter, \
Path, \
get_files, \
L
class ImageImageDataLoaders(DataLoaders):
"""Basic wrapper around several `DataLoader`s with factory methods for Image to Image problems"""
@classmethod
@delegates(DataLoaders.from_dblock)
def from_label_func(cls, path, filenames, label_func, valid_pct=0.2, seed=None, item_transforms=None,
batch_transforms=None, **kwargs):
"""Create from list of `fnames` in `path`s with `label_func`."""
datablock = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImageBW)),
get_y=label_func,
splitter=RandomSplitter(valid_pct, seed=seed),
item_tfms=item_transforms,
batch_tfms=batch_transforms)
res = cls.from_dblock(datablock, filenames, path=path, **kwargs)
return res
def get_y_fn(x):
y = str(x.absolute()).replace('.jpg', '_depth.png')
y = Path(y)
return y
def create_data(data_path, is_test=False):
with open(r"./src/code/params.yml") as f:
params = yaml.safe_load(f)
filenames = get_files(data_path, extensions='.jpg')
if len(filenames) == 0:
raise ValueError("Could not find any files in the given path")
dataset = ImageImageDataLoaders.from_label_func(data_path,
seed=int(params['seed']),
bs=int(params['batch_size']),
num_workers=int(params['num_workers']),
filenames=filenames,
label_func=get_y_fn)
if is_test:
filenames = get_files(Path(data_path), extensions='.jpg')
test_files = L([Path(i) for i in filenames])
test_dl = dataset.test_dl(test_files, with_labels=True)
return dataset, test_dl
return dataset