Spaces:
Runtime error
Runtime error
kiramayatu
commited on
Commit
•
d3f5ab2
1
Parent(s):
2fbb3ac
Upload 28 files
Browse files- DATA.MD +42 -0
- DATA_EN.MD +46 -0
- LICENSE +201 -0
- README.md +55 -13
- README_ZH.md +60 -0
- VC_inference.py +139 -0
- attentions.py +303 -0
- cmd_inference.py +106 -0
- commons.py +164 -0
- data_utils.py +267 -0
- denoise_audio.py +18 -0
- download_model.py +4 -0
- download_video.py +37 -0
- finetune_speaker_v2.py +321 -0
- long_audio_transcribe.py +71 -0
- losses.py +61 -0
- mel_processing.py +112 -0
- models.py +533 -0
- models_infer.py +402 -0
- modules.py +390 -0
- preprocess_v2.py +151 -0
- rearrange_speaker.py +37 -0
- requirements.txt +24 -0
- short_audio_transcribe.py +111 -0
- transforms.py +193 -0
- utils.py +400 -0
- video2audio.py +27 -0
- voice_upload.py +28 -0
DATA.MD
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
本仓库的pipeline支持多种声音样本上传方式,您只需根据您所持有的样本选择任意一种或其中几种即可。
|
2 |
+
|
3 |
+
1.`.zip`文件打包的,按角色名排列的短音频,该压缩文件结构应如下所示:
|
4 |
+
```
|
5 |
+
Your-zip-file.zip
|
6 |
+
├───Character_name_1
|
7 |
+
├ ├───xxx.wav
|
8 |
+
├ ├───...
|
9 |
+
├ ├───yyy.mp3
|
10 |
+
├ └───zzz.wav
|
11 |
+
├───Character_name_2
|
12 |
+
├ ├───xxx.wav
|
13 |
+
├ ├───...
|
14 |
+
├ ├───yyy.mp3
|
15 |
+
├ └───zzz.wav
|
16 |
+
├───...
|
17 |
+
├
|
18 |
+
└───Character_name_n
|
19 |
+
├───xxx.wav
|
20 |
+
├───...
|
21 |
+
├───yyy.mp3
|
22 |
+
└───zzz.wav
|
23 |
+
```
|
24 |
+
注意音频的格式和名称都不重要,只要它们是音频文件。
|
25 |
+
质量要求:2秒以上,10秒以内,尽量不要有背景噪音。
|
26 |
+
数量要求:一个角色至少10条,最好每个角色20条以上。
|
27 |
+
2. 以角色名命名的长音频文件,音频内只能有单说话人,背景音会被自动去除。命名格式为:`{CharacterName}_{random_number}.wav`
|
28 |
+
(例如:`Diana_234135.wav`, `MinatoAqua_234252.wav`),必须是`.wav`文件,长度要在20分钟以内(否则会内存不足)。
|
29 |
+
|
30 |
+
3. 以角色名命名的长视频文件,视频内只能有单说话人,背景音会被自动去除。命名格式为:`{CharacterName}_{random_number}.mp4`
|
31 |
+
(例如:`Taffy_332452.mp4`, `Dingzhen_957315.mp4`),必须是`.mp4`文件,长度要在20分钟以内(否则会内存不足)。
|
32 |
+
注意:命名中,`CharacterName`必须是英文字符,`random_number`是为了区分同一个角色的多个文件,必须要添加,该数字可以为0~999999之间的任意整数。
|
33 |
+
|
34 |
+
4. 包含多行`{CharacterName}|{video_url}`的`.txt`文件,格式应如下所示:
|
35 |
+
```
|
36 |
+
Char1|https://xyz.com/video1/
|
37 |
+
Char2|https://xyz.com/video2/
|
38 |
+
Char2|https://xyz.com/video3/
|
39 |
+
Char3|https://xyz.com/video4/
|
40 |
+
```
|
41 |
+
视频内只能有单说话人,背景音会被自动去除。目前仅支持来自bilibili的视频,其它网站视频的url还没测试过。
|
42 |
+
若对格式有疑问,可以在[这里](https://drive.google.com/file/d/132l97zjanpoPY4daLgqXoM7HKXPRbS84/view?usp=sharing)找到所有格式对应的数据样本。
|
DATA_EN.MD
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The pipeline of this repo supports multiple voice uploading options,you can choose one or more options depending on the data you have.
|
2 |
+
|
3 |
+
1. Short audios packed by a single `.zip` file, whose file structure should be as shown below:
|
4 |
+
```
|
5 |
+
Your-zip-file.zip
|
6 |
+
├───Character_name_1
|
7 |
+
├ ├───xxx.wav
|
8 |
+
├ ├───...
|
9 |
+
├ ├───yyy.mp3
|
10 |
+
├ └───zzz.wav
|
11 |
+
├───Character_name_2
|
12 |
+
├ ├───xxx.wav
|
13 |
+
├ ├───...
|
14 |
+
├ ├───yyy.mp3
|
15 |
+
├ └───zzz.wav
|
16 |
+
├───...
|
17 |
+
├
|
18 |
+
└───Character_name_n
|
19 |
+
├───xxx.wav
|
20 |
+
├───...
|
21 |
+
├───yyy.mp3
|
22 |
+
└───zzz.wav
|
23 |
+
```
|
24 |
+
Note that the format of the audio files does not matter as long as they are audio files。
|
25 |
+
Quality requirement: >=2s, <=10s, contain as little background sound as possible.
|
26 |
+
Quantity requirement: at least 10 per character, 20+ per character is recommended.
|
27 |
+
2. Long audio files named by character names, which should contain single character voice only. Background sound is
|
28 |
+
acceptable since they will be automatically removed. File name format `{CharacterName}_{random_number}.wav`
|
29 |
+
(E.G. `Diana_234135.wav`, `MinatoAqua_234252.wav`), must be `.wav` files.
|
30 |
+
|
31 |
+
|
32 |
+
3. Long video files named by character names, which should contain single character voice only. Background sound is
|
33 |
+
acceptable since they will be automatically removed. File name format `{CharacterName}_{random_number}.mp4`
|
34 |
+
(E.G. `Taffy_332452.mp4`, `Dingzhen_957315.mp4`), must be `.mp4` files.
|
35 |
+
Note: `CharacterName` must be English characters only, `random_number` is to identify multiple files for one character,
|
36 |
+
which is compulsory to add. It could be a random integer between 0~999999.
|
37 |
+
|
38 |
+
4. A `.txt` containing multiple lines of`{CharacterName}|{video_url}`, which should be formatted as follows:
|
39 |
+
```
|
40 |
+
Char1|https://xyz.com/video1/
|
41 |
+
Char2|https://xyz.com/video2/
|
42 |
+
Char2|https://xyz.com/video3/
|
43 |
+
Char3|https://xyz.com/video4/
|
44 |
+
```
|
45 |
+
One video should contain single speaker only. Currently supports videos links from bilibili, other websites are yet to be tested.
|
46 |
+
Having questions regarding to data format? Fine data samples of all format from [here](https://drive.google.com/file/d/132l97zjanpoPY4daLgqXoM7HKXPRbS84/view?usp=sharing).
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,55 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[中文文档请点击这里](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/README_ZH.md)
|
2 |
+
# VITS Fast Fine-tuning
|
3 |
+
This repo will guide you to add your own character voices, or even your own voice, into existing VITS TTS model
|
4 |
+
to make it able to do the following tasks in less than 1 hour:
|
5 |
+
|
6 |
+
1. Many-to-many voice conversion between any characters you added & preset characters in the model.
|
7 |
+
2. English, Japanese & Chinese Text-to-Speech synthesis with the characters you added & preset characters
|
8 |
+
|
9 |
+
|
10 |
+
Welcome to play around with the base models!
|
11 |
+
Chinese & English & Japanese:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer) Author: Me
|
12 |
+
|
13 |
+
Chinese & Japanese:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai) Author: [SayaSS](https://github.com/SayaSS)
|
14 |
+
|
15 |
+
|
16 |
+
### Currently Supported Tasks:
|
17 |
+
- [x] Clone character voice from 10+ short audios
|
18 |
+
- [x] Clone character voice from long audio(s) >= 3 minutes (one audio should contain single speaker only)
|
19 |
+
- [x] Clone character voice from videos(s) >= 3 minutes (one video should contain single speaker only)
|
20 |
+
- [x] Clone character voice from BILIBILI video links (one video should contain single speaker only)
|
21 |
+
|
22 |
+
### Currently Supported Characters for TTS & VC:
|
23 |
+
- [x] Any character you wish as long as you have their voices!
|
24 |
+
(Note that voice conversion can only be conducted between any two speakers in the model)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
## Fine-tuning
|
29 |
+
It's recommended to perform fine-tuning on [Google Colab](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
30 |
+
because the original VITS has some dependencies that are difficult to configure.
|
31 |
+
|
32 |
+
### How long does it take?
|
33 |
+
1. Install dependencies (3 min)
|
34 |
+
2. Choose pretrained model to start. The detailed differences between them are described in [Colab Notebook](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
35 |
+
3. Upload the voice samples of the characters you wish to add,see [DATA.MD](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/DATA_EN.MD) for detailed uploading options.
|
36 |
+
4. Start fine-tuning. Time taken varies from 20 minutes ~ 2 hours, depending on the number of voices you uploaded.
|
37 |
+
|
38 |
+
|
39 |
+
## Inference or Usage (Currently support Windows only)
|
40 |
+
0. Remember to download your fine-tuned model!
|
41 |
+
1. Download the latest release
|
42 |
+
2. Put your model & config file into the folder `inference`, which are named `G_latest.pth` and `finetune_speaker.json`, respectively.
|
43 |
+
3. The file structure should be as follows:
|
44 |
+
```
|
45 |
+
inference
|
46 |
+
├───inference.exe
|
47 |
+
├───...
|
48 |
+
├───finetune_speaker.json
|
49 |
+
└───G_latest.pth
|
50 |
+
```
|
51 |
+
4. run `inference.exe`, the browser should pop up automatically.
|
52 |
+
|
53 |
+
## Use in MoeGoe
|
54 |
+
0. Prepare downloaded model & config file, which are named `G_latest.pth` and `moegoe_config.json`, respectively.
|
55 |
+
1. Follow [MoeGoe](https://github.com/CjangCjengh/MoeGoe) page instructions to install, configure path, and use.
|
README_ZH.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
English Documentation Please Click [here](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/README.md)
|
2 |
+
# VITS 快速微调
|
3 |
+
这个代码库会指导你如何将自定义角色(甚至你自己),加入预训练的VITS模型中,在1小时内的微调使模型具备如下功能:
|
4 |
+
1. 在 模型所包含的任意两个角色 之间进行声线转换
|
5 |
+
2. 以 你加入的角色声线 进行中日英三语 文本到语音合成。
|
6 |
+
|
7 |
+
本项目使用的底模涵盖常见二次元男/女配音声线(来自原神数据集)以及现实世界常见男/女声线(来自VCTK数据集),支持中日英三语,保证能够在微调时快速适应新的声线。
|
8 |
+
|
9 |
+
欢迎体验微调所使用的底模!
|
10 |
+
|
11 |
+
中日英:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer) 作者:我
|
12 |
+
|
13 |
+
中日:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai) 作者:[SayaSS](https://github.com/SayaSS)
|
14 |
+
|
15 |
+
### 目前支持的任务:
|
16 |
+
- [x] 从 10条以上的短音频 克隆角色声音
|
17 |
+
- [x] 从 3分钟以上的长音频(单个音频只能包含单说话人) 克隆角色声音
|
18 |
+
- [x] 从 3分钟以上的视频(单个视频只能包含单说话人) 克隆角色声音
|
19 |
+
- [x] 通过输入 bilibili视频链接(单个视频只能包含单说话人) 克隆角色声音
|
20 |
+
|
21 |
+
### 目前支持声线转换和中日英三语TTS的角色
|
22 |
+
- [x] 任意角色(只要你有角色的声音样本)
|
23 |
+
(注意:声线转换只能在任意两个存在于模型中的说话人之间进行)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
## 微调
|
29 |
+
建议使用 [Google Colab](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
30 |
+
进行微调任务,因为VITS在多语言情况下的某些环境依赖相当难以配置。
|
31 |
+
### 在Google Colab里,我需要花多长时间?
|
32 |
+
1. 安装依赖 (3 min)
|
33 |
+
2. 选择预训练模型,详细区别参见[Colab 笔记本页面](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)。
|
34 |
+
3. 上传你希望加入的其它角色声音,详细上传方式见[DATA.MD](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/DATA.MD)
|
35 |
+
4. 进行微调,根据选择的微调方式和样本数量不同,花费时长可能在20分钟到2小时不等。
|
36 |
+
|
37 |
+
微调结束后可以直接下载微调好的模型,日后在本地运行(不需要GPU)
|
38 |
+
|
39 |
+
## 本地运行和推理
|
40 |
+
0. 记得下载微调好的模型和config文件!
|
41 |
+
1. 下载最新的Release包(在Github页面的右侧)
|
42 |
+
2. 把下载的模型和config文件放在 `inference`文件夹下, 其文件名分别为 `G_latest.pth` 和 `finetune_speaker.json`。
|
43 |
+
3. 一切准备就绪后,文件结构应该如下所示:
|
44 |
+
```
|
45 |
+
inference
|
46 |
+
├───inference.exe
|
47 |
+
├───...
|
48 |
+
├───finetune_speaker.json
|
49 |
+
└───G_latest.pth
|
50 |
+
```
|
51 |
+
4. 运行 `inference.exe`, 浏览器会自动弹出窗口, 注意其所在路径不能有中文字符或者空格.
|
52 |
+
|
53 |
+
## 在MoeGoe使用
|
54 |
+
0. MoeGoe以及类似其它VITS推理UI使用的config格式略有不同,需要下载的文件为模型`G_latest.pth`和配置文件`moegoe_config.json`
|
55 |
+
1. 按照[MoeGoe](https://github.com/CjangCjengh/MoeGoe)页面的提示配置路径即可使用。
|
56 |
+
2. MoeGoe在输入句子时需要使用相应的语言标记包裹句子才能正常合成。(日语用[JA], 中文用[ZH], 英文用[EN]),例如:
|
57 |
+
[JA]こんにちわ。[JA]
|
58 |
+
[ZH]你好![ZH]
|
59 |
+
[EN]Hello![EN]
|
60 |
+
|
VC_inference.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import no_grad, LongTensor
|
5 |
+
import argparse
|
6 |
+
import commons
|
7 |
+
from mel_processing import spectrogram_torch
|
8 |
+
import utils
|
9 |
+
from models import SynthesizerTrn
|
10 |
+
import gradio as gr
|
11 |
+
import librosa
|
12 |
+
import webbrowser
|
13 |
+
|
14 |
+
from text import text_to_sequence, _clean_text
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
language_marks = {
|
17 |
+
"Japanese": "",
|
18 |
+
"日本語": "[JA]",
|
19 |
+
"简体中文": "[ZH]",
|
20 |
+
"English": "[EN]",
|
21 |
+
"Mix": "",
|
22 |
+
}
|
23 |
+
lang = ['日本語', '简体中文', 'English', 'Mix']
|
24 |
+
def get_text(text, hps, is_symbol):
|
25 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
26 |
+
if hps.data.add_blank:
|
27 |
+
text_norm = commons.intersperse(text_norm, 0)
|
28 |
+
text_norm = LongTensor(text_norm)
|
29 |
+
return text_norm
|
30 |
+
|
31 |
+
def create_tts_fn(model, hps, speaker_ids):
|
32 |
+
def tts_fn(text, speaker, language, speed):
|
33 |
+
if language is not None:
|
34 |
+
text = language_marks[language] + text + language_marks[language]
|
35 |
+
speaker_id = speaker_ids[speaker]
|
36 |
+
stn_tst = get_text(text, hps, False)
|
37 |
+
with no_grad():
|
38 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
39 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
40 |
+
sid = LongTensor([speaker_id]).to(device)
|
41 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
42 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
43 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
44 |
+
return "Success", (hps.data.sampling_rate, audio)
|
45 |
+
|
46 |
+
return tts_fn
|
47 |
+
|
48 |
+
def create_vc_fn(model, hps, speaker_ids):
|
49 |
+
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
|
50 |
+
input_audio = record_audio if record_audio is not None else upload_audio
|
51 |
+
if input_audio is None:
|
52 |
+
return "You need to record or upload an audio", None
|
53 |
+
sampling_rate, audio = input_audio
|
54 |
+
original_speaker_id = speaker_ids[original_speaker]
|
55 |
+
target_speaker_id = speaker_ids[target_speaker]
|
56 |
+
|
57 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
58 |
+
if len(audio.shape) > 1:
|
59 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
60 |
+
if sampling_rate != hps.data.sampling_rate:
|
61 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
62 |
+
with no_grad():
|
63 |
+
y = torch.FloatTensor(audio)
|
64 |
+
y = y / max(-y.min(), y.max()) / 0.99
|
65 |
+
y = y.to(device)
|
66 |
+
y = y.unsqueeze(0)
|
67 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
68 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
69 |
+
center=False).to(device)
|
70 |
+
spec_lengths = LongTensor([spec.size(-1)]).to(device)
|
71 |
+
sid_src = LongTensor([original_speaker_id]).to(device)
|
72 |
+
sid_tgt = LongTensor([target_speaker_id]).to(device)
|
73 |
+
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
74 |
+
0, 0].data.cpu().float().numpy()
|
75 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
76 |
+
return "Success", (hps.data.sampling_rate, audio)
|
77 |
+
|
78 |
+
return vc_fn
|
79 |
+
if __name__ == "__main__":
|
80 |
+
parser = argparse.ArgumentParser()
|
81 |
+
parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
|
82 |
+
parser.add_argument("--config_dir", default="./finetune_speaker.json", help="directory to your model config file")
|
83 |
+
parser.add_argument("--share", default=False, help="make link public (used in colab)")
|
84 |
+
|
85 |
+
args = parser.parse_args()
|
86 |
+
hps = utils.get_hparams_from_file(args.config_dir)
|
87 |
+
|
88 |
+
|
89 |
+
net_g = SynthesizerTrn(
|
90 |
+
len(hps.symbols),
|
91 |
+
hps.data.filter_length // 2 + 1,
|
92 |
+
hps.train.segment_size // hps.data.hop_length,
|
93 |
+
n_speakers=hps.data.n_speakers,
|
94 |
+
**hps.model).to(device)
|
95 |
+
_ = net_g.eval()
|
96 |
+
|
97 |
+
_ = utils.load_checkpoint(args.model_dir, net_g, None)
|
98 |
+
speaker_ids = hps.speakers
|
99 |
+
speakers = list(hps.speakers.keys())
|
100 |
+
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
|
101 |
+
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
|
102 |
+
app = gr.Blocks()
|
103 |
+
with app:
|
104 |
+
with gr.Tab("Text-to-Speech"):
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column():
|
107 |
+
textbox = gr.TextArea(label="Text",
|
108 |
+
placeholder="Type your sentence here",
|
109 |
+
value="こんにちわ。", elem_id=f"tts-input")
|
110 |
+
# select character
|
111 |
+
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
|
112 |
+
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
|
113 |
+
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
|
114 |
+
label='速度 Speed')
|
115 |
+
with gr.Column():
|
116 |
+
text_output = gr.Textbox(label="Message")
|
117 |
+
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
118 |
+
btn = gr.Button("Generate!")
|
119 |
+
btn.click(tts_fn,
|
120 |
+
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
|
121 |
+
outputs=[text_output, audio_output])
|
122 |
+
with gr.Tab("Voice Conversion"):
|
123 |
+
gr.Markdown("""
|
124 |
+
录制或上传声音,并选择要转换的音色。
|
125 |
+
""")
|
126 |
+
with gr.Column():
|
127 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
128 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
129 |
+
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
|
130 |
+
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
|
131 |
+
with gr.Column():
|
132 |
+
message_box = gr.Textbox(label="Message")
|
133 |
+
converted_audio = gr.Audio(label='converted audio')
|
134 |
+
btn = gr.Button("Convert!")
|
135 |
+
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
136 |
+
outputs=[message_box, converted_audio])
|
137 |
+
webbrowser.open("http://127.0.0.1:7860")
|
138 |
+
app.launch(share=args.share)
|
139 |
+
|
attentions.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
from modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.hidden_channels = hidden_channels
|
17 |
+
self.filter_channels = filter_channels
|
18 |
+
self.n_heads = n_heads
|
19 |
+
self.n_layers = n_layers
|
20 |
+
self.kernel_size = kernel_size
|
21 |
+
self.p_dropout = p_dropout
|
22 |
+
self.window_size = window_size
|
23 |
+
|
24 |
+
self.drop = nn.Dropout(p_dropout)
|
25 |
+
self.attn_layers = nn.ModuleList()
|
26 |
+
self.norm_layers_1 = nn.ModuleList()
|
27 |
+
self.ffn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_2 = nn.ModuleList()
|
29 |
+
for i in range(self.n_layers):
|
30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
+
|
35 |
+
def forward(self, x, x_mask):
|
36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
+
x = x * x_mask
|
38 |
+
for i in range(self.n_layers):
|
39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
+
y = self.drop(y)
|
41 |
+
x = self.norm_layers_1[i](x + y)
|
42 |
+
|
43 |
+
y = self.ffn_layers[i](x, x_mask)
|
44 |
+
y = self.drop(y)
|
45 |
+
x = self.norm_layers_2[i](x + y)
|
46 |
+
x = x * x_mask
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_channels = hidden_channels
|
54 |
+
self.filter_channels = filter_channels
|
55 |
+
self.n_heads = n_heads
|
56 |
+
self.n_layers = n_layers
|
57 |
+
self.kernel_size = kernel_size
|
58 |
+
self.p_dropout = p_dropout
|
59 |
+
self.proximal_bias = proximal_bias
|
60 |
+
self.proximal_init = proximal_init
|
61 |
+
|
62 |
+
self.drop = nn.Dropout(p_dropout)
|
63 |
+
self.self_attn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_0 = nn.ModuleList()
|
65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_1 = nn.ModuleList()
|
67 |
+
self.ffn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_2 = nn.ModuleList()
|
69 |
+
for i in range(self.n_layers):
|
70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
+
|
77 |
+
def forward(self, x, x_mask, h, h_mask):
|
78 |
+
"""
|
79 |
+
x: decoder input
|
80 |
+
h: encoder output
|
81 |
+
"""
|
82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
+
x = x * x_mask
|
85 |
+
for i in range(self.n_layers):
|
86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_0[i](x + y)
|
89 |
+
|
90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
+
y = self.drop(y)
|
92 |
+
x = self.norm_layers_1[i](x + y)
|
93 |
+
|
94 |
+
y = self.ffn_layers[i](x, x_mask)
|
95 |
+
y = self.drop(y)
|
96 |
+
x = self.norm_layers_2[i](x + y)
|
97 |
+
x = x * x_mask
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
class MultiHeadAttention(nn.Module):
|
102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
+
super().__init__()
|
104 |
+
assert channels % n_heads == 0
|
105 |
+
|
106 |
+
self.channels = channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.n_heads = n_heads
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.window_size = window_size
|
111 |
+
self.heads_share = heads_share
|
112 |
+
self.block_length = block_length
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
self.attn = None
|
116 |
+
|
117 |
+
self.k_channels = channels // n_heads
|
118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
+
self.drop = nn.Dropout(p_dropout)
|
123 |
+
|
124 |
+
if window_size is not None:
|
125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
126 |
+
rel_stddev = self.k_channels**-0.5
|
127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
+
|
130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
+
if proximal_init:
|
134 |
+
with torch.no_grad():
|
135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
+
|
138 |
+
def forward(self, x, c, attn_mask=None):
|
139 |
+
q = self.conv_q(x)
|
140 |
+
k = self.conv_k(c)
|
141 |
+
v = self.conv_v(c)
|
142 |
+
|
143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
+
|
145 |
+
x = self.conv_o(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def attention(self, query, key, value, mask=None):
|
149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
+
|
155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
+
if self.window_size is not None:
|
157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
+
scores = scores + scores_local
|
162 |
+
if self.proximal_bias:
|
163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
+
if mask is not None:
|
166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
+
if self.block_length is not None:
|
168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
+
p_attn = self.drop(p_attn)
|
173 |
+
output = torch.matmul(p_attn, value)
|
174 |
+
if self.window_size is not None:
|
175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
+
return output, p_attn
|
180 |
+
|
181 |
+
def _matmul_with_relative_values(self, x, y):
|
182 |
+
"""
|
183 |
+
x: [b, h, l, m]
|
184 |
+
y: [h or 1, m, d]
|
185 |
+
ret: [b, h, l, d]
|
186 |
+
"""
|
187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def _matmul_with_relative_keys(self, x, y):
|
191 |
+
"""
|
192 |
+
x: [b, h, l, d]
|
193 |
+
y: [h or 1, m, d]
|
194 |
+
ret: [b, h, l, m]
|
195 |
+
"""
|
196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
+
return ret
|
198 |
+
|
199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
+
max_relative_position = 2 * self.window_size + 1
|
201 |
+
# Pad first before slice to avoid using cond ops.
|
202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
+
if pad_length > 0:
|
206 |
+
padded_relative_embeddings = F.pad(
|
207 |
+
relative_embeddings,
|
208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
+
else:
|
210 |
+
padded_relative_embeddings = relative_embeddings
|
211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
+
return used_relative_embeddings
|
213 |
+
|
214 |
+
def _relative_position_to_absolute_position(self, x):
|
215 |
+
"""
|
216 |
+
x: [b, h, l, 2*l-1]
|
217 |
+
ret: [b, h, l, l]
|
218 |
+
"""
|
219 |
+
batch, heads, length, _ = x.size()
|
220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
+
|
223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
+
|
227 |
+
# Reshape and slice out the padded elements.
|
228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
+
return x_final
|
230 |
+
|
231 |
+
def _absolute_position_to_relative_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, l]
|
234 |
+
ret: [b, h, l, 2*l-1]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# padd along column
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
+
return x_final
|
244 |
+
|
245 |
+
def _attention_bias_proximal(self, length):
|
246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
247 |
+
Args:
|
248 |
+
length: an integer scalar.
|
249 |
+
Returns:
|
250 |
+
a Tensor with shape [1, 1, length, length]
|
251 |
+
"""
|
252 |
+
r = torch.arange(length, dtype=torch.float32)
|
253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
+
|
256 |
+
|
257 |
+
class FFN(nn.Module):
|
258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
+
super().__init__()
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.out_channels = out_channels
|
262 |
+
self.filter_channels = filter_channels
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.activation = activation
|
266 |
+
self.causal = causal
|
267 |
+
|
268 |
+
if causal:
|
269 |
+
self.padding = self._causal_padding
|
270 |
+
else:
|
271 |
+
self.padding = self._same_padding
|
272 |
+
|
273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
+
self.drop = nn.Dropout(p_dropout)
|
276 |
+
|
277 |
+
def forward(self, x, x_mask):
|
278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
279 |
+
if self.activation == "gelu":
|
280 |
+
x = x * torch.sigmoid(1.702 * x)
|
281 |
+
else:
|
282 |
+
x = torch.relu(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
285 |
+
return x * x_mask
|
286 |
+
|
287 |
+
def _causal_padding(self, x):
|
288 |
+
if self.kernel_size == 1:
|
289 |
+
return x
|
290 |
+
pad_l = self.kernel_size - 1
|
291 |
+
pad_r = 0
|
292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
+
return x
|
295 |
+
|
296 |
+
def _same_padding(self, x):
|
297 |
+
if self.kernel_size == 1:
|
298 |
+
return x
|
299 |
+
pad_l = (self.kernel_size - 1) // 2
|
300 |
+
pad_r = self.kernel_size // 2
|
301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
+
return x
|
cmd_inference.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""该模块用于生成VITS文件
|
2 |
+
使用方法
|
3 |
+
|
4 |
+
python cmd_inference.py -m 模型路径 -c 配置文件路径 -o 输出文件路径 -l 输入的语言 -t 输入文本 -s 合成目标说话人名称
|
5 |
+
|
6 |
+
可选参数
|
7 |
+
-ns 感情变化程度
|
8 |
+
-nsw 音素发音长度
|
9 |
+
-ls 整体语速
|
10 |
+
-on 输出文件的名称
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
+
from pathlib import Path
|
15 |
+
import utils
|
16 |
+
from models import SynthesizerTrn
|
17 |
+
import torch
|
18 |
+
from torch import no_grad, LongTensor
|
19 |
+
import librosa
|
20 |
+
from text import text_to_sequence, _clean_text
|
21 |
+
import commons
|
22 |
+
import scipy.io.wavfile as wavf
|
23 |
+
import os
|
24 |
+
|
25 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
26 |
+
|
27 |
+
language_marks = {
|
28 |
+
"Japanese": "",
|
29 |
+
"日本語": "[JA]",
|
30 |
+
"简体中文": "[ZH]",
|
31 |
+
"English": "[EN]",
|
32 |
+
"Mix": "",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def get_text(text, hps, is_symbol):
|
37 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
38 |
+
if hps.data.add_blank:
|
39 |
+
text_norm = commons.intersperse(text_norm, 0)
|
40 |
+
text_norm = LongTensor(text_norm)
|
41 |
+
return text_norm
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
import argparse
|
47 |
+
|
48 |
+
parser = argparse.ArgumentParser(description='vits inference')
|
49 |
+
#必须参数
|
50 |
+
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
|
51 |
+
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
52 |
+
parser.add_argument('-o', '--output_path', type=str, default="output/vits", help='输出文件路径')
|
53 |
+
parser.add_argument('-l', '--language', type=str, default="日本語", help='输入的语言')
|
54 |
+
parser.add_argument('-t', '--text', type=str, help='输入文本')
|
55 |
+
parser.add_argument('-s', '--spk', type=str, help='合成目标说话人名称')
|
56 |
+
#可选参数
|
57 |
+
parser.add_argument('-on', '--output_name', type=str, default="output", help='输出文件的名称')
|
58 |
+
parser.add_argument('-ns', '--noise_scale', type=float,default= .667,help='感情变化程度')
|
59 |
+
parser.add_argument('-nsw', '--noise_scale_w', type=float,default=0.6, help='音素发音长度')
|
60 |
+
parser.add_argument('-ls', '--length_scale', type=float,default=1, help='整体语速')
|
61 |
+
|
62 |
+
args = parser.parse_args()
|
63 |
+
|
64 |
+
model_path = args.model_path
|
65 |
+
config_path = args.config_path
|
66 |
+
output_dir = Path(args.output_path)
|
67 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
68 |
+
|
69 |
+
language = args.language
|
70 |
+
text = args.text
|
71 |
+
spk = args.spk
|
72 |
+
noise_scale = args.noise_scale
|
73 |
+
noise_scale_w = args.noise_scale_w
|
74 |
+
length = args.length_scale
|
75 |
+
output_name = args.output_name
|
76 |
+
|
77 |
+
hps = utils.get_hparams_from_file(config_path)
|
78 |
+
net_g = SynthesizerTrn(
|
79 |
+
len(hps.symbols),
|
80 |
+
hps.data.filter_length // 2 + 1,
|
81 |
+
hps.train.segment_size // hps.data.hop_length,
|
82 |
+
n_speakers=hps.data.n_speakers,
|
83 |
+
**hps.model).to(device)
|
84 |
+
_ = net_g.eval()
|
85 |
+
_ = utils.load_checkpoint(model_path, net_g, None)
|
86 |
+
|
87 |
+
speaker_ids = hps.speakers
|
88 |
+
|
89 |
+
|
90 |
+
if language is not None:
|
91 |
+
text = language_marks[language] + text + language_marks[language]
|
92 |
+
speaker_id = speaker_ids[spk]
|
93 |
+
stn_tst = get_text(text, hps, False)
|
94 |
+
with no_grad():
|
95 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
96 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
97 |
+
sid = LongTensor([speaker_id]).to(device)
|
98 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
|
99 |
+
length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy()
|
100 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
101 |
+
|
102 |
+
wavf.write(str(output_dir)+"/"+output_name+".wav",hps.data.sampling_rate,audio)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
commons.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
try:
|
54 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
55 |
+
except RuntimeError:
|
56 |
+
print("?")
|
57 |
+
return ret
|
58 |
+
|
59 |
+
|
60 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
+
b, d, t = x.size()
|
62 |
+
if x_lengths is None:
|
63 |
+
x_lengths = t
|
64 |
+
ids_str_max = x_lengths - segment_size + 1
|
65 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
+
ret = slice_segments(x, ids_str, segment_size)
|
67 |
+
return ret, ids_str
|
68 |
+
|
69 |
+
|
70 |
+
def get_timing_signal_1d(
|
71 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
72 |
+
position = torch.arange(length, dtype=torch.float)
|
73 |
+
num_timescales = channels // 2
|
74 |
+
log_timescale_increment = (
|
75 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
76 |
+
(num_timescales - 1))
|
77 |
+
inv_timescales = min_timescale * torch.exp(
|
78 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
+
|
91 |
+
|
92 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
+
b, channels, length = x.size()
|
94 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
+
|
97 |
+
|
98 |
+
def subsequent_mask(length):
|
99 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
+
return mask
|
101 |
+
|
102 |
+
|
103 |
+
@torch.jit.script
|
104 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
+
n_channels_int = n_channels[0]
|
106 |
+
in_act = input_a + input_b
|
107 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
+
acts = t_act * s_act
|
110 |
+
return acts
|
111 |
+
|
112 |
+
|
113 |
+
def convert_pad_shape(pad_shape):
|
114 |
+
l = pad_shape[::-1]
|
115 |
+
pad_shape = [item for sublist in l for item in sublist]
|
116 |
+
return pad_shape
|
117 |
+
|
118 |
+
|
119 |
+
def shift_1d(x):
|
120 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
def sequence_mask(length, max_length=None):
|
125 |
+
if max_length is None:
|
126 |
+
max_length = length.max()
|
127 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
+
|
130 |
+
|
131 |
+
def generate_path(duration, mask):
|
132 |
+
"""
|
133 |
+
duration: [b, 1, t_x]
|
134 |
+
mask: [b, 1, t_y, t_x]
|
135 |
+
"""
|
136 |
+
device = duration.device
|
137 |
+
|
138 |
+
b, _, t_y, t_x = mask.shape
|
139 |
+
cum_duration = torch.cumsum(duration, -1)
|
140 |
+
|
141 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
+
path = path.view(b, t_x, t_y)
|
144 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
146 |
+
return path
|
147 |
+
|
148 |
+
|
149 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
+
if isinstance(parameters, torch.Tensor):
|
151 |
+
parameters = [parameters]
|
152 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
+
norm_type = float(norm_type)
|
154 |
+
if clip_value is not None:
|
155 |
+
clip_value = float(clip_value)
|
156 |
+
|
157 |
+
total_norm = 0
|
158 |
+
for p in parameters:
|
159 |
+
param_norm = p.grad.data.norm(norm_type)
|
160 |
+
total_norm += param_norm.item() ** norm_type
|
161 |
+
if clip_value is not None:
|
162 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
+
total_norm = total_norm ** (1. / norm_type)
|
164 |
+
return total_norm
|
data_utils.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from mel_processing import spectrogram_torch
|
11 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
+
from text import text_to_sequence, cleaned_text_to_sequence
|
13 |
+
"""Multi speaker version"""
|
14 |
+
|
15 |
+
|
16 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
17 |
+
"""
|
18 |
+
1) loads audio, speaker_id, text pairs
|
19 |
+
2) normalizes text and converts them to sequences of integers
|
20 |
+
3) computes spectrograms from audio files.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, audiopaths_sid_text, hparams, symbols):
|
24 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
25 |
+
self.text_cleaners = hparams.text_cleaners
|
26 |
+
self.max_wav_value = hparams.max_wav_value
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.filter_length = hparams.filter_length
|
29 |
+
self.hop_length = hparams.hop_length
|
30 |
+
self.win_length = hparams.win_length
|
31 |
+
self.sampling_rate = hparams.sampling_rate
|
32 |
+
|
33 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
34 |
+
|
35 |
+
self.add_blank = hparams.add_blank
|
36 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
37 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
38 |
+
self.symbols = symbols
|
39 |
+
|
40 |
+
random.seed(1234)
|
41 |
+
random.shuffle(self.audiopaths_sid_text)
|
42 |
+
self._filter()
|
43 |
+
|
44 |
+
def _filter(self):
|
45 |
+
"""
|
46 |
+
Filter text & store spec lengths
|
47 |
+
"""
|
48 |
+
# Store spectrogram lengths for Bucketing
|
49 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
50 |
+
# spec_length = wav_length // hop_length
|
51 |
+
|
52 |
+
audiopaths_sid_text_new = []
|
53 |
+
lengths = []
|
54 |
+
for audiopath, sid, text in self.audiopaths_sid_text:
|
55 |
+
# audiopath = "./user_voice/" + audiopath
|
56 |
+
|
57 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
58 |
+
audiopaths_sid_text_new.append([audiopath, sid, text])
|
59 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
60 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
61 |
+
self.lengths = lengths
|
62 |
+
|
63 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
64 |
+
# separate filename, speaker_id and text
|
65 |
+
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
66 |
+
text = self.get_text(text)
|
67 |
+
spec, wav = self.get_audio(audiopath)
|
68 |
+
sid = self.get_sid(sid)
|
69 |
+
return (text, spec, wav, sid)
|
70 |
+
|
71 |
+
def get_audio(self, filename):
|
72 |
+
# audio, sampling_rate = load_wav_to_torch(filename)
|
73 |
+
# if sampling_rate != self.sampling_rate:
|
74 |
+
# raise ValueError("{} {} SR doesn't match target {} SR".format(
|
75 |
+
# sampling_rate, self.sampling_rate))
|
76 |
+
# audio_norm = audio / self.max_wav_value if audio.max() > 10 else audio
|
77 |
+
# audio_norm = audio_norm.unsqueeze(0)
|
78 |
+
audio_norm, sampling_rate = torchaudio.load(filename, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
79 |
+
# spec_filename = filename.replace(".wav", ".spec.pt")
|
80 |
+
# if os.path.exists(spec_filename):
|
81 |
+
# spec = torch.load(spec_filename)
|
82 |
+
# else:
|
83 |
+
# try:
|
84 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
85 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
86 |
+
center=False)
|
87 |
+
spec = spec.squeeze(0)
|
88 |
+
# except NotImplementedError:
|
89 |
+
# print("?")
|
90 |
+
# spec = torch.squeeze(spec, 0)
|
91 |
+
# torch.save(spec, spec_filename)
|
92 |
+
return spec, audio_norm
|
93 |
+
|
94 |
+
def get_text(self, text):
|
95 |
+
if self.cleaned_text:
|
96 |
+
text_norm = cleaned_text_to_sequence(text, self.symbols)
|
97 |
+
else:
|
98 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
99 |
+
if self.add_blank:
|
100 |
+
text_norm = commons.intersperse(text_norm, 0)
|
101 |
+
text_norm = torch.LongTensor(text_norm)
|
102 |
+
return text_norm
|
103 |
+
|
104 |
+
def get_sid(self, sid):
|
105 |
+
sid = torch.LongTensor([int(sid)])
|
106 |
+
return sid
|
107 |
+
|
108 |
+
def __getitem__(self, index):
|
109 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.audiopaths_sid_text)
|
113 |
+
|
114 |
+
|
115 |
+
class TextAudioSpeakerCollate():
|
116 |
+
""" Zero-pads model inputs and targets
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, return_ids=False):
|
120 |
+
self.return_ids = return_ids
|
121 |
+
|
122 |
+
def __call__(self, batch):
|
123 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
124 |
+
PARAMS
|
125 |
+
------
|
126 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
127 |
+
"""
|
128 |
+
# Right zero-pad all one-hot text sequences to max input length
|
129 |
+
_, ids_sorted_decreasing = torch.sort(
|
130 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
131 |
+
dim=0, descending=True)
|
132 |
+
|
133 |
+
max_text_len = max([len(x[0]) for x in batch])
|
134 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
135 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
136 |
+
|
137 |
+
text_lengths = torch.LongTensor(len(batch))
|
138 |
+
spec_lengths = torch.LongTensor(len(batch))
|
139 |
+
wav_lengths = torch.LongTensor(len(batch))
|
140 |
+
sid = torch.LongTensor(len(batch))
|
141 |
+
|
142 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
143 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
144 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
145 |
+
text_padded.zero_()
|
146 |
+
spec_padded.zero_()
|
147 |
+
wav_padded.zero_()
|
148 |
+
for i in range(len(ids_sorted_decreasing)):
|
149 |
+
row = batch[ids_sorted_decreasing[i]]
|
150 |
+
|
151 |
+
text = row[0]
|
152 |
+
text_padded[i, :text.size(0)] = text
|
153 |
+
text_lengths[i] = text.size(0)
|
154 |
+
|
155 |
+
spec = row[1]
|
156 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
157 |
+
spec_lengths[i] = spec.size(1)
|
158 |
+
|
159 |
+
wav = row[2]
|
160 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
161 |
+
wav_lengths[i] = wav.size(1)
|
162 |
+
|
163 |
+
sid[i] = row[3]
|
164 |
+
|
165 |
+
if self.return_ids:
|
166 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
167 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
168 |
+
|
169 |
+
|
170 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
171 |
+
"""
|
172 |
+
Maintain similar input lengths in a batch.
|
173 |
+
Length groups are specified by boundaries.
|
174 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
175 |
+
|
176 |
+
It removes samples which are not included in the boundaries.
|
177 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
181 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
182 |
+
self.lengths = dataset.lengths
|
183 |
+
self.batch_size = batch_size
|
184 |
+
self.boundaries = boundaries
|
185 |
+
|
186 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
187 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
188 |
+
self.num_samples = self.total_size // self.num_replicas
|
189 |
+
|
190 |
+
def _create_buckets(self):
|
191 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
192 |
+
for i in range(len(self.lengths)):
|
193 |
+
length = self.lengths[i]
|
194 |
+
idx_bucket = self._bisect(length)
|
195 |
+
if idx_bucket != -1:
|
196 |
+
buckets[idx_bucket].append(i)
|
197 |
+
|
198 |
+
for i in range(len(buckets) - 1, 0, -1):
|
199 |
+
if len(buckets[i]) == 0:
|
200 |
+
buckets.pop(i)
|
201 |
+
self.boundaries.pop(i + 1)
|
202 |
+
|
203 |
+
num_samples_per_bucket = []
|
204 |
+
for i in range(len(buckets)):
|
205 |
+
len_bucket = len(buckets[i])
|
206 |
+
total_batch_size = self.num_replicas * self.batch_size
|
207 |
+
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
208 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
209 |
+
return buckets, num_samples_per_bucket
|
210 |
+
|
211 |
+
def __iter__(self):
|
212 |
+
# deterministically shuffle based on epoch
|
213 |
+
g = torch.Generator()
|
214 |
+
g.manual_seed(self.epoch)
|
215 |
+
|
216 |
+
indices = []
|
217 |
+
if self.shuffle:
|
218 |
+
for bucket in self.buckets:
|
219 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
220 |
+
else:
|
221 |
+
for bucket in self.buckets:
|
222 |
+
indices.append(list(range(len(bucket))))
|
223 |
+
|
224 |
+
batches = []
|
225 |
+
for i in range(len(self.buckets)):
|
226 |
+
bucket = self.buckets[i]
|
227 |
+
len_bucket = len(bucket)
|
228 |
+
ids_bucket = indices[i]
|
229 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
230 |
+
|
231 |
+
# add extra samples to make it evenly divisible
|
232 |
+
rem = num_samples_bucket - len_bucket
|
233 |
+
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
234 |
+
|
235 |
+
# subsample
|
236 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
237 |
+
|
238 |
+
# batching
|
239 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
240 |
+
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
241 |
+
batches.append(batch)
|
242 |
+
|
243 |
+
if self.shuffle:
|
244 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
245 |
+
batches = [batches[i] for i in batch_ids]
|
246 |
+
self.batches = batches
|
247 |
+
|
248 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
249 |
+
return iter(self.batches)
|
250 |
+
|
251 |
+
def _bisect(self, x, lo=0, hi=None):
|
252 |
+
if hi is None:
|
253 |
+
hi = len(self.boundaries) - 1
|
254 |
+
|
255 |
+
if hi > lo:
|
256 |
+
mid = (hi + lo) // 2
|
257 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
258 |
+
return mid
|
259 |
+
elif x <= self.boundaries[mid]:
|
260 |
+
return self._bisect(x, lo, mid)
|
261 |
+
else:
|
262 |
+
return self._bisect(x, mid + 1, hi)
|
263 |
+
else:
|
264 |
+
return -1
|
265 |
+
|
266 |
+
def __len__(self):
|
267 |
+
return self.num_samples // self.batch_size
|
denoise_audio.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torchaudio
|
3 |
+
raw_audio_dir = "./raw_audio/"
|
4 |
+
denoise_audio_dir = "./denoised_audio/"
|
5 |
+
filelist = list(os.walk(raw_audio_dir))[0][2]
|
6 |
+
|
7 |
+
for file in filelist:
|
8 |
+
if file.endswith(".wav"):
|
9 |
+
os.system(f"demucs --two-stems=vocals {raw_audio_dir}{file}")
|
10 |
+
for file in filelist:
|
11 |
+
file = file.replace(".wav", "")
|
12 |
+
wav, sr = torchaudio.load(f"./separated/htdemucs/{file}/vocals.wav", frame_offset=0, num_frames=-1, normalize=True,
|
13 |
+
channels_first=True)
|
14 |
+
# merge two channels into one
|
15 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
16 |
+
if sr != 22050:
|
17 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)(wav)
|
18 |
+
torchaudio.save(denoise_audio_dir + file + ".wav", wav, 22050, channels_first=True)
|
download_model.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.colab import files
|
2 |
+
files.download("./G_latest.pth")
|
3 |
+
files.download("./finetune_speaker.json")
|
4 |
+
files.download("./moegoe_config.json")
|
download_video.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import shutil
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from google.colab import files
|
6 |
+
|
7 |
+
basepath = os.getcwd()
|
8 |
+
uploaded = files.upload() # 上传文件
|
9 |
+
for filename in uploaded.keys():
|
10 |
+
assert (filename.endswith(".txt")), "speaker-videolink info could only be .txt file!"
|
11 |
+
shutil.move(os.path.join(basepath, filename), os.path.join("./speaker_links.txt"))
|
12 |
+
|
13 |
+
|
14 |
+
def generate_infos():
|
15 |
+
infos = []
|
16 |
+
with open("./speaker_links.txt", 'r', encoding='utf-8') as f:
|
17 |
+
lines = f.readlines()
|
18 |
+
for line in lines:
|
19 |
+
line = line.replace("\n", "").replace(" ", "")
|
20 |
+
if line == "":
|
21 |
+
continue
|
22 |
+
speaker, link = line.split("|")
|
23 |
+
filename = speaker + "_" + str(random.randint(0, 1000000))
|
24 |
+
infos.append({"link": link, "filename": filename})
|
25 |
+
return infos
|
26 |
+
|
27 |
+
|
28 |
+
def download_video(info):
|
29 |
+
link = info["link"]
|
30 |
+
filename = info["filename"]
|
31 |
+
os.system(f"youtube-dl -f 0 {link} -o ./video_data/{filename}.mp4")
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
infos = generate_infos()
|
36 |
+
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
37 |
+
executor.map(download_video, infos)
|
finetune_speaker_v2.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import itertools
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn, optim
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
import torch.multiprocessing as mp
|
12 |
+
import torch.distributed as dist
|
13 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
+
from torch.cuda.amp import autocast, GradScaler
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
import librosa
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
+
|
22 |
+
import commons
|
23 |
+
import utils
|
24 |
+
from data_utils import (
|
25 |
+
TextAudioSpeakerLoader,
|
26 |
+
TextAudioSpeakerCollate,
|
27 |
+
DistributedBucketSampler
|
28 |
+
)
|
29 |
+
from models import (
|
30 |
+
SynthesizerTrn,
|
31 |
+
MultiPeriodDiscriminator,
|
32 |
+
)
|
33 |
+
from losses import (
|
34 |
+
generator_loss,
|
35 |
+
discriminator_loss,
|
36 |
+
feature_loss,
|
37 |
+
kl_loss
|
38 |
+
)
|
39 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
40 |
+
|
41 |
+
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
global_step = 0
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
48 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
49 |
+
|
50 |
+
n_gpus = torch.cuda.device_count()
|
51 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
52 |
+
os.environ['MASTER_PORT'] = '8000'
|
53 |
+
|
54 |
+
hps = utils.get_hparams()
|
55 |
+
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
56 |
+
|
57 |
+
|
58 |
+
def run(rank, n_gpus, hps):
|
59 |
+
global global_step
|
60 |
+
symbols = hps['symbols']
|
61 |
+
if rank == 0:
|
62 |
+
logger = utils.get_logger(hps.model_dir)
|
63 |
+
logger.info(hps)
|
64 |
+
utils.check_git_hash(hps.model_dir)
|
65 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
66 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
67 |
+
|
68 |
+
# Use gloo backend on Windows for Pytorch
|
69 |
+
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
70 |
+
torch.manual_seed(hps.train.seed)
|
71 |
+
torch.cuda.set_device(rank)
|
72 |
+
|
73 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, symbols)
|
74 |
+
train_sampler = DistributedBucketSampler(
|
75 |
+
train_dataset,
|
76 |
+
hps.train.batch_size,
|
77 |
+
[32,300,400,500,600,700,800,900,1000],
|
78 |
+
num_replicas=n_gpus,
|
79 |
+
rank=rank,
|
80 |
+
shuffle=True)
|
81 |
+
collate_fn = TextAudioSpeakerCollate()
|
82 |
+
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
|
83 |
+
collate_fn=collate_fn, batch_sampler=train_sampler)
|
84 |
+
# train_loader = DataLoader(train_dataset, batch_size=hps.train.batch_size, num_workers=2, shuffle=False, pin_memory=True,
|
85 |
+
# collate_fn=collate_fn)
|
86 |
+
if rank == 0:
|
87 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, symbols)
|
88 |
+
eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
89 |
+
batch_size=hps.train.batch_size, pin_memory=True,
|
90 |
+
drop_last=False, collate_fn=collate_fn)
|
91 |
+
|
92 |
+
net_g = SynthesizerTrn(
|
93 |
+
len(symbols),
|
94 |
+
hps.data.filter_length // 2 + 1,
|
95 |
+
hps.train.segment_size // hps.data.hop_length,
|
96 |
+
n_speakers=hps.data.n_speakers,
|
97 |
+
**hps.model).cuda(rank)
|
98 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
99 |
+
|
100 |
+
# load existing model
|
101 |
+
_, _, _, _ = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None, drop_speaker_emb=hps.drop_speaker_embed)
|
102 |
+
_, _, _, _ = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
|
103 |
+
epoch_str = 1
|
104 |
+
global_step = 0
|
105 |
+
# freeze all other layers except speaker embedding
|
106 |
+
for p in net_g.parameters():
|
107 |
+
p.requires_grad = True
|
108 |
+
for p in net_d.parameters():
|
109 |
+
p.requires_grad = True
|
110 |
+
# for p in net_d.parameters():
|
111 |
+
# p.requires_grad = False
|
112 |
+
# net_g.emb_g.weight.requires_grad = True
|
113 |
+
optim_g = torch.optim.AdamW(
|
114 |
+
net_g.parameters(),
|
115 |
+
hps.train.learning_rate,
|
116 |
+
betas=hps.train.betas,
|
117 |
+
eps=hps.train.eps)
|
118 |
+
optim_d = torch.optim.AdamW(
|
119 |
+
net_d.parameters(),
|
120 |
+
hps.train.learning_rate,
|
121 |
+
betas=hps.train.betas,
|
122 |
+
eps=hps.train.eps)
|
123 |
+
# optim_d = None
|
124 |
+
net_g = DDP(net_g, device_ids=[rank])
|
125 |
+
net_d = DDP(net_d, device_ids=[rank])
|
126 |
+
|
127 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay)
|
128 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay)
|
129 |
+
|
130 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
131 |
+
|
132 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
133 |
+
if rank==0:
|
134 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
135 |
+
else:
|
136 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
137 |
+
scheduler_g.step()
|
138 |
+
scheduler_d.step()
|
139 |
+
|
140 |
+
|
141 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
142 |
+
net_g, net_d = nets
|
143 |
+
optim_g, optim_d = optims
|
144 |
+
scheduler_g, scheduler_d = schedulers
|
145 |
+
train_loader, eval_loader = loaders
|
146 |
+
if writers is not None:
|
147 |
+
writer, writer_eval = writers
|
148 |
+
|
149 |
+
# train_loader.batch_sampler.set_epoch(epoch)
|
150 |
+
global global_step
|
151 |
+
|
152 |
+
net_g.train()
|
153 |
+
net_d.train()
|
154 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader)):
|
155 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
156 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
157 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
158 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
159 |
+
|
160 |
+
with autocast(enabled=hps.train.fp16_run):
|
161 |
+
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
|
162 |
+
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
163 |
+
|
164 |
+
mel = spec_to_mel_torch(
|
165 |
+
spec,
|
166 |
+
hps.data.filter_length,
|
167 |
+
hps.data.n_mel_channels,
|
168 |
+
hps.data.sampling_rate,
|
169 |
+
hps.data.mel_fmin,
|
170 |
+
hps.data.mel_fmax)
|
171 |
+
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
172 |
+
y_hat_mel = mel_spectrogram_torch(
|
173 |
+
y_hat.squeeze(1),
|
174 |
+
hps.data.filter_length,
|
175 |
+
hps.data.n_mel_channels,
|
176 |
+
hps.data.sampling_rate,
|
177 |
+
hps.data.hop_length,
|
178 |
+
hps.data.win_length,
|
179 |
+
hps.data.mel_fmin,
|
180 |
+
hps.data.mel_fmax
|
181 |
+
)
|
182 |
+
|
183 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
184 |
+
|
185 |
+
# Discriminator
|
186 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
187 |
+
with autocast(enabled=False):
|
188 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
189 |
+
loss_disc_all = loss_disc
|
190 |
+
optim_d.zero_grad()
|
191 |
+
scaler.scale(loss_disc_all).backward()
|
192 |
+
scaler.unscale_(optim_d)
|
193 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
194 |
+
scaler.step(optim_d)
|
195 |
+
|
196 |
+
with autocast(enabled=hps.train.fp16_run):
|
197 |
+
# Generator
|
198 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
199 |
+
with autocast(enabled=False):
|
200 |
+
loss_dur = torch.sum(l_length.float())
|
201 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
202 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
203 |
+
|
204 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
205 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
206 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
207 |
+
optim_g.zero_grad()
|
208 |
+
scaler.scale(loss_gen_all).backward()
|
209 |
+
scaler.unscale_(optim_g)
|
210 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
211 |
+
scaler.step(optim_g)
|
212 |
+
scaler.update()
|
213 |
+
|
214 |
+
if rank==0:
|
215 |
+
if global_step % hps.train.log_interval == 0:
|
216 |
+
lr = optim_g.param_groups[0]['lr']
|
217 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
218 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
219 |
+
epoch,
|
220 |
+
100. * batch_idx / len(train_loader)))
|
221 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
222 |
+
|
223 |
+
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
224 |
+
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
225 |
+
|
226 |
+
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
227 |
+
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
228 |
+
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
229 |
+
image_dict = {
|
230 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
231 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
232 |
+
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
233 |
+
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
234 |
+
}
|
235 |
+
utils.summarize(
|
236 |
+
writer=writer,
|
237 |
+
global_step=global_step,
|
238 |
+
images=image_dict,
|
239 |
+
scalars=scalar_dict)
|
240 |
+
|
241 |
+
if global_step % hps.train.eval_interval == 0:
|
242 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
243 |
+
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
244 |
+
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
|
245 |
+
os.path.join(hps.model_dir, "G_latest.pth".format(global_step)))
|
246 |
+
# utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
247 |
+
old_g=os.path.join(hps.model_dir, "G_{}.pth".format(global_step-4000))
|
248 |
+
# old_d=os.path.join(hps.model_dir, "D_{}.pth".format(global_step-400))
|
249 |
+
if os.path.exists(old_g):
|
250 |
+
os.remove(old_g)
|
251 |
+
# if os.path.exists(old_d):
|
252 |
+
# os.remove(old_d)
|
253 |
+
global_step += 1
|
254 |
+
if epoch > hps.max_epochs:
|
255 |
+
print("Maximum epoch reached, closing training...")
|
256 |
+
exit()
|
257 |
+
|
258 |
+
if rank == 0:
|
259 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
260 |
+
|
261 |
+
|
262 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
263 |
+
generator.eval()
|
264 |
+
with torch.no_grad():
|
265 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
|
266 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
267 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
268 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
269 |
+
speakers = speakers.cuda(0)
|
270 |
+
|
271 |
+
# remove else
|
272 |
+
x = x[:1]
|
273 |
+
x_lengths = x_lengths[:1]
|
274 |
+
spec = spec[:1]
|
275 |
+
spec_lengths = spec_lengths[:1]
|
276 |
+
y = y[:1]
|
277 |
+
y_lengths = y_lengths[:1]
|
278 |
+
speakers = speakers[:1]
|
279 |
+
break
|
280 |
+
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
|
281 |
+
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
282 |
+
|
283 |
+
mel = spec_to_mel_torch(
|
284 |
+
spec,
|
285 |
+
hps.data.filter_length,
|
286 |
+
hps.data.n_mel_channels,
|
287 |
+
hps.data.sampling_rate,
|
288 |
+
hps.data.mel_fmin,
|
289 |
+
hps.data.mel_fmax)
|
290 |
+
y_hat_mel = mel_spectrogram_torch(
|
291 |
+
y_hat.squeeze(1).float(),
|
292 |
+
hps.data.filter_length,
|
293 |
+
hps.data.n_mel_channels,
|
294 |
+
hps.data.sampling_rate,
|
295 |
+
hps.data.hop_length,
|
296 |
+
hps.data.win_length,
|
297 |
+
hps.data.mel_fmin,
|
298 |
+
hps.data.mel_fmax
|
299 |
+
)
|
300 |
+
image_dict = {
|
301 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
302 |
+
}
|
303 |
+
audio_dict = {
|
304 |
+
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
305 |
+
}
|
306 |
+
if global_step == 0:
|
307 |
+
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
308 |
+
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
309 |
+
|
310 |
+
utils.summarize(
|
311 |
+
writer=writer_eval,
|
312 |
+
global_step=global_step,
|
313 |
+
images=image_dict,
|
314 |
+
audios=audio_dict,
|
315 |
+
audio_sampling_rate=hps.data.sampling_rate
|
316 |
+
)
|
317 |
+
generator.train()
|
318 |
+
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
main()
|
long_audio_transcribe.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from moviepy.editor import AudioFileClip
|
2 |
+
import whisper
|
3 |
+
import os
|
4 |
+
import torchaudio
|
5 |
+
import librosa
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
parent_dir = "./denoised_audio/"
|
9 |
+
filelist = list(os.walk(parent_dir))[0][2]
|
10 |
+
if __name__ == "__main__":
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument("--languages", default="CJE")
|
13 |
+
parser.add_argument("--whisper_size", default="medium")
|
14 |
+
args = parser.parse_args()
|
15 |
+
if args.languages == "CJE":
|
16 |
+
lang2token = {
|
17 |
+
'zh': "[ZH]",
|
18 |
+
'ja': "[JA]",
|
19 |
+
"en": "[EN]",
|
20 |
+
}
|
21 |
+
elif args.languages == "CJ":
|
22 |
+
lang2token = {
|
23 |
+
'zh': "[ZH]",
|
24 |
+
'ja': "[JA]",
|
25 |
+
}
|
26 |
+
elif args.languages == "C":
|
27 |
+
lang2token = {
|
28 |
+
'zh': "[ZH]",
|
29 |
+
}
|
30 |
+
assert(torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
31 |
+
model = whisper.load_model(args.whisper_size)
|
32 |
+
speaker_annos = []
|
33 |
+
for file in filelist:
|
34 |
+
print(f"transcribing {parent_dir + file}...\n")
|
35 |
+
options = dict(beam_size=5, best_of=5)
|
36 |
+
transcribe_options = dict(task="transcribe", **options)
|
37 |
+
result = model.transcribe(parent_dir + file, **transcribe_options)
|
38 |
+
segments = result["segments"]
|
39 |
+
# result = model.transcribe(parent_dir + file)
|
40 |
+
lang = result['language']
|
41 |
+
if result['language'] not in list(lang2token.keys()):
|
42 |
+
print(f"{lang} not supported, ignoring...\n")
|
43 |
+
continue
|
44 |
+
# segment audio based on segment results
|
45 |
+
character_name = file.rstrip(".wav").split("_")[0]
|
46 |
+
code = file.rstrip(".wav").split("_")[1]
|
47 |
+
if not os.path.exists("./segmented_character_voice/" + character_name):
|
48 |
+
os.mkdir("./segmented_character_voice/" + character_name)
|
49 |
+
wav, sr = torchaudio.load(parent_dir + file, frame_offset=0, num_frames=-1, normalize=True,
|
50 |
+
channels_first=True)
|
51 |
+
|
52 |
+
for i, seg in enumerate(result['segments']):
|
53 |
+
start_time = seg['start']
|
54 |
+
end_time = seg['end']
|
55 |
+
text = seg['text']
|
56 |
+
text = lang2token[lang] + text.replace("\n", "") + lang2token[lang]
|
57 |
+
text = text + "\n"
|
58 |
+
wav_seg = wav[:, int(start_time*sr):int(end_time*sr)]
|
59 |
+
wav_seg_name = f"{character_name}_{code}_{i}.wav"
|
60 |
+
savepth = "./segmented_character_voice/" + character_name + "/" + wav_seg_name
|
61 |
+
speaker_annos.append(savepth + "|" + character_name + "|" + text)
|
62 |
+
print(f"Transcribed segment: {speaker_annos[-1]}")
|
63 |
+
# trimmed_wav_seg = librosa.effects.trim(wav_seg.squeeze().numpy())
|
64 |
+
# trimmed_wav_seg = torch.tensor(trimmed_wav_seg[0]).unsqueeze(0)
|
65 |
+
torchaudio.save(savepth, wav_seg, 22050, channels_first=True)
|
66 |
+
if len(speaker_annos) == 0:
|
67 |
+
print("Warning: no long audios & videos found, this IS expected if you have only uploaded short audios")
|
68 |
+
print("this IS NOT expected if you have uploaded any long audios, videos or video links. Please check your file structure or make sure your audio/video language is supported.")
|
69 |
+
with open("long_character_anno.txt", 'w', encoding='utf-8') as f:
|
70 |
+
for line in speaker_annos:
|
71 |
+
f.write(line)
|
losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y.float(), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
+
x = torch.detach(x)
|
52 |
+
x = self.pre(x)
|
53 |
+
if g is not None:
|
54 |
+
g = torch.detach(g)
|
55 |
+
x = x + self.cond(g)
|
56 |
+
x = self.convs(x, x_mask)
|
57 |
+
x = self.proj(x) * x_mask
|
58 |
+
|
59 |
+
if not reverse:
|
60 |
+
flows = self.flows
|
61 |
+
assert w is not None
|
62 |
+
|
63 |
+
logdet_tot_q = 0
|
64 |
+
h_w = self.post_pre(w)
|
65 |
+
h_w = self.post_convs(h_w, x_mask)
|
66 |
+
h_w = self.post_proj(h_w) * x_mask
|
67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
+
z_q = e_q
|
69 |
+
for flow in self.post_flows:
|
70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
+
logdet_tot_q += logdet_q
|
72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
+
u = torch.sigmoid(z_u) * x_mask
|
74 |
+
z0 = (w - u) * x_mask
|
75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
+
|
78 |
+
logdet_tot = 0
|
79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
+
logdet_tot += logdet
|
81 |
+
z = torch.cat([z0, z1], 1)
|
82 |
+
for flow in flows:
|
83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
+
logdet_tot = logdet_tot + logdet
|
85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
+
return nll + logq # [b]
|
87 |
+
else:
|
88 |
+
flows = list(reversed(self.flows))
|
89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
+
for flow in flows:
|
92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
+
logw = z0
|
95 |
+
return logw
|
96 |
+
|
97 |
+
|
98 |
+
class DurationPredictor(nn.Module):
|
99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.in_channels = in_channels
|
103 |
+
self.filter_channels = filter_channels
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = p_dropout
|
106 |
+
self.gin_channels = gin_channels
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
+
|
115 |
+
if gin_channels != 0:
|
116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
x = torch.detach(x)
|
120 |
+
if g is not None:
|
121 |
+
g = torch.detach(g)
|
122 |
+
x = x + self.cond(g)
|
123 |
+
x = self.conv_1(x * x_mask)
|
124 |
+
x = torch.relu(x)
|
125 |
+
x = self.norm_1(x)
|
126 |
+
x = self.drop(x)
|
127 |
+
x = self.conv_2(x * x_mask)
|
128 |
+
x = torch.relu(x)
|
129 |
+
x = self.norm_2(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.proj(x * x_mask)
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class TextEncoder(nn.Module):
|
136 |
+
def __init__(self,
|
137 |
+
n_vocab,
|
138 |
+
out_channels,
|
139 |
+
hidden_channels,
|
140 |
+
filter_channels,
|
141 |
+
n_heads,
|
142 |
+
n_layers,
|
143 |
+
kernel_size,
|
144 |
+
p_dropout):
|
145 |
+
super().__init__()
|
146 |
+
self.n_vocab = n_vocab
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.filter_channels = filter_channels
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.kernel_size = kernel_size
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
+
self.flows.append(modules.Flip())
|
201 |
+
|
202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
+
if not reverse:
|
204 |
+
for flow in self.flows:
|
205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
+
else:
|
207 |
+
for flow in reversed(self.flows):
|
208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class PosteriorEncoder(nn.Module):
|
213 |
+
def __init__(self,
|
214 |
+
in_channels,
|
215 |
+
out_channels,
|
216 |
+
hidden_channels,
|
217 |
+
kernel_size,
|
218 |
+
dilation_rate,
|
219 |
+
n_layers,
|
220 |
+
gin_channels=0):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.hidden_channels = hidden_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.dilation_rate = dilation_rate
|
227 |
+
self.n_layers = n_layers
|
228 |
+
self.gin_channels = gin_channels
|
229 |
+
|
230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
+
|
234 |
+
def forward(self, x, x_lengths, g=None):
|
235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
+
x = self.pre(x) * x_mask
|
237 |
+
x = self.enc(x, x_mask, g=g)
|
238 |
+
stats = self.proj(x) * x_mask
|
239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
+
return z, m, logs, x_mask
|
242 |
+
|
243 |
+
|
244 |
+
class Generator(torch.nn.Module):
|
245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
+
super(Generator, self).__init__()
|
247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
+
self.num_upsamples = len(upsample_rates)
|
249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
+
|
252 |
+
self.ups = nn.ModuleList()
|
253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
+
self.ups.append(weight_norm(
|
255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
+
k, u, padding=(k-u)//2)))
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
+
self.resblocks.append(resblock(ch, k, d))
|
263 |
+
|
264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
+
self.ups.apply(init_weights)
|
266 |
+
|
267 |
+
if gin_channels != 0:
|
268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
+
|
270 |
+
def forward(self, x, g=None):
|
271 |
+
x = self.conv_pre(x)
|
272 |
+
if g is not None:
|
273 |
+
x = x + self.cond(g)
|
274 |
+
|
275 |
+
for i in range(self.num_upsamples):
|
276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
+
x = self.ups[i](x)
|
278 |
+
xs = None
|
279 |
+
for j in range(self.num_kernels):
|
280 |
+
if xs is None:
|
281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
else:
|
283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
+
x = xs / self.num_kernels
|
285 |
+
x = F.leaky_relu(x)
|
286 |
+
x = self.conv_post(x)
|
287 |
+
x = torch.tanh(x)
|
288 |
+
|
289 |
+
return x
|
290 |
+
|
291 |
+
def remove_weight_norm(self):
|
292 |
+
print('Removing weight norm...')
|
293 |
+
for l in self.ups:
|
294 |
+
remove_weight_norm(l)
|
295 |
+
for l in self.resblocks:
|
296 |
+
l.remove_weight_norm()
|
297 |
+
|
298 |
+
|
299 |
+
class DiscriminatorP(torch.nn.Module):
|
300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
+
super(DiscriminatorP, self).__init__()
|
302 |
+
self.period = period
|
303 |
+
self.use_spectral_norm = use_spectral_norm
|
304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
+
self.convs = nn.ModuleList([
|
306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
])
|
312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
fmap = []
|
316 |
+
|
317 |
+
# 1d to 2d
|
318 |
+
b, c, t = x.shape
|
319 |
+
if t % self.period != 0: # pad first
|
320 |
+
n_pad = self.period - (t % self.period)
|
321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
+
t = t + n_pad
|
323 |
+
x = x.view(b, c, t // self.period, self.period)
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class DiscriminatorS(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(DiscriminatorS, self).__init__()
|
339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
+
self.convs = nn.ModuleList([
|
341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
+
])
|
348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
fmap = []
|
352 |
+
|
353 |
+
for l in self.convs:
|
354 |
+
x = l(x)
|
355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
+
fmap.append(x)
|
357 |
+
x = self.conv_post(x)
|
358 |
+
fmap.append(x)
|
359 |
+
x = torch.flatten(x, 1, -1)
|
360 |
+
|
361 |
+
return x, fmap
|
362 |
+
|
363 |
+
|
364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
+
def __init__(self, use_spectral_norm=False):
|
366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
+
periods = [2,3,5,7,11]
|
368 |
+
|
369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
+
self.discriminators = nn.ModuleList(discs)
|
372 |
+
|
373 |
+
def forward(self, y, y_hat):
|
374 |
+
y_d_rs = []
|
375 |
+
y_d_gs = []
|
376 |
+
fmap_rs = []
|
377 |
+
fmap_gs = []
|
378 |
+
for i, d in enumerate(self.discriminators):
|
379 |
+
y_d_r, fmap_r = d(y)
|
380 |
+
y_d_g, fmap_g = d(y_hat)
|
381 |
+
y_d_rs.append(y_d_r)
|
382 |
+
y_d_gs.append(y_d_g)
|
383 |
+
fmap_rs.append(fmap_r)
|
384 |
+
fmap_gs.append(fmap_g)
|
385 |
+
|
386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
class SynthesizerTrn(nn.Module):
|
391 |
+
"""
|
392 |
+
Synthesizer for Training
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self,
|
396 |
+
n_vocab,
|
397 |
+
spec_channels,
|
398 |
+
segment_size,
|
399 |
+
inter_channels,
|
400 |
+
hidden_channels,
|
401 |
+
filter_channels,
|
402 |
+
n_heads,
|
403 |
+
n_layers,
|
404 |
+
kernel_size,
|
405 |
+
p_dropout,
|
406 |
+
resblock,
|
407 |
+
resblock_kernel_sizes,
|
408 |
+
resblock_dilation_sizes,
|
409 |
+
upsample_rates,
|
410 |
+
upsample_initial_channel,
|
411 |
+
upsample_kernel_sizes,
|
412 |
+
n_speakers=0,
|
413 |
+
gin_channels=0,
|
414 |
+
use_sdp=True,
|
415 |
+
**kwargs):
|
416 |
+
|
417 |
+
super().__init__()
|
418 |
+
self.n_vocab = n_vocab
|
419 |
+
self.spec_channels = spec_channels
|
420 |
+
self.inter_channels = inter_channels
|
421 |
+
self.hidden_channels = hidden_channels
|
422 |
+
self.filter_channels = filter_channels
|
423 |
+
self.n_heads = n_heads
|
424 |
+
self.n_layers = n_layers
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.resblock = resblock
|
428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
+
self.upsample_rates = upsample_rates
|
431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
+
self.segment_size = segment_size
|
434 |
+
self.n_speakers = n_speakers
|
435 |
+
self.gin_channels = gin_channels
|
436 |
+
|
437 |
+
self.use_sdp = use_sdp
|
438 |
+
|
439 |
+
self.enc_p = TextEncoder(n_vocab,
|
440 |
+
inter_channels,
|
441 |
+
hidden_channels,
|
442 |
+
filter_channels,
|
443 |
+
n_heads,
|
444 |
+
n_layers,
|
445 |
+
kernel_size,
|
446 |
+
p_dropout)
|
447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
+
|
451 |
+
if use_sdp:
|
452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
+
else:
|
454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
+
|
456 |
+
if n_speakers >= 1:
|
457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
+
|
461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
+
if self.n_speakers > 0:
|
463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
+
else:
|
465 |
+
g = None
|
466 |
+
|
467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
+
z_p = self.flow(z, y_mask, g=g)
|
469 |
+
|
470 |
+
with torch.no_grad():
|
471 |
+
# negative cross-entropy
|
472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
+
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
+
|
482 |
+
w = attn.sum(2)
|
483 |
+
if self.use_sdp:
|
484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
+
l_length = l_length / torch.sum(x_mask)
|
486 |
+
else:
|
487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
+
logw = self.dp(x, x_mask, g=g)
|
489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
+
|
491 |
+
# expand prior
|
492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
+
o = self.dec(z_slice, g=g)
|
497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
+
|
499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
+
if self.n_speakers > 0:
|
502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
+
else:
|
504 |
+
g = None
|
505 |
+
|
506 |
+
if self.use_sdp:
|
507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
+
else:
|
509 |
+
logw = self.dp(x, x_mask, g=g)
|
510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
511 |
+
w_ceil = torch.ceil(w)
|
512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
+
|
517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
|
520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
+
|
525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
models_infer.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from commons import init_weights, get_padding
|
13 |
+
|
14 |
+
|
15 |
+
class StochasticDurationPredictor(nn.Module):
|
16 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
17 |
+
super().__init__()
|
18 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
+
self.in_channels = in_channels
|
20 |
+
self.filter_channels = filter_channels
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.n_flows = n_flows
|
24 |
+
self.gin_channels = gin_channels
|
25 |
+
|
26 |
+
self.log_flow = modules.Log()
|
27 |
+
self.flows = nn.ModuleList()
|
28 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
+
for i in range(n_flows):
|
30 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
31 |
+
self.flows.append(modules.Flip())
|
32 |
+
|
33 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
36 |
+
self.post_flows = nn.ModuleList()
|
37 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
+
for i in range(4):
|
39 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
40 |
+
self.post_flows.append(modules.Flip())
|
41 |
+
|
42 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
45 |
+
if gin_channels != 0:
|
46 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
+
|
48 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
49 |
+
x = torch.detach(x)
|
50 |
+
x = self.pre(x)
|
51 |
+
if g is not None:
|
52 |
+
g = torch.detach(g)
|
53 |
+
x = x + self.cond(g)
|
54 |
+
x = self.convs(x, x_mask)
|
55 |
+
x = self.proj(x) * x_mask
|
56 |
+
|
57 |
+
if not reverse:
|
58 |
+
flows = self.flows
|
59 |
+
assert w is not None
|
60 |
+
|
61 |
+
logdet_tot_q = 0
|
62 |
+
h_w = self.post_pre(w)
|
63 |
+
h_w = self.post_convs(h_w, x_mask)
|
64 |
+
h_w = self.post_proj(h_w) * x_mask
|
65 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
66 |
+
z_q = e_q
|
67 |
+
for flow in self.post_flows:
|
68 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
69 |
+
logdet_tot_q += logdet_q
|
70 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
+
u = torch.sigmoid(z_u) * x_mask
|
72 |
+
z0 = (w - u) * x_mask
|
73 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
74 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
75 |
+
|
76 |
+
logdet_tot = 0
|
77 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
78 |
+
logdet_tot += logdet
|
79 |
+
z = torch.cat([z0, z1], 1)
|
80 |
+
for flow in flows:
|
81 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
+
logdet_tot = logdet_tot + logdet
|
83 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
84 |
+
return nll + logq # [b]
|
85 |
+
else:
|
86 |
+
flows = list(reversed(self.flows))
|
87 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
89 |
+
for flow in flows:
|
90 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
92 |
+
logw = z0
|
93 |
+
return logw
|
94 |
+
|
95 |
+
|
96 |
+
class DurationPredictor(nn.Module):
|
97 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.in_channels = in_channels
|
101 |
+
self.filter_channels = filter_channels
|
102 |
+
self.kernel_size = kernel_size
|
103 |
+
self.p_dropout = p_dropout
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.drop = nn.Dropout(p_dropout)
|
107 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
108 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
+
|
113 |
+
if gin_channels != 0:
|
114 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
115 |
+
|
116 |
+
def forward(self, x, x_mask, g=None):
|
117 |
+
x = torch.detach(x)
|
118 |
+
if g is not None:
|
119 |
+
g = torch.detach(g)
|
120 |
+
x = x + self.cond(g)
|
121 |
+
x = self.conv_1(x * x_mask)
|
122 |
+
x = torch.relu(x)
|
123 |
+
x = self.norm_1(x)
|
124 |
+
x = self.drop(x)
|
125 |
+
x = self.conv_2(x * x_mask)
|
126 |
+
x = torch.relu(x)
|
127 |
+
x = self.norm_2(x)
|
128 |
+
x = self.drop(x)
|
129 |
+
x = self.proj(x * x_mask)
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class TextEncoder(nn.Module):
|
134 |
+
def __init__(self,
|
135 |
+
n_vocab,
|
136 |
+
out_channels,
|
137 |
+
hidden_channels,
|
138 |
+
filter_channels,
|
139 |
+
n_heads,
|
140 |
+
n_layers,
|
141 |
+
kernel_size,
|
142 |
+
p_dropout):
|
143 |
+
super().__init__()
|
144 |
+
self.n_vocab = n_vocab
|
145 |
+
self.out_channels = out_channels
|
146 |
+
self.hidden_channels = hidden_channels
|
147 |
+
self.filter_channels = filter_channels
|
148 |
+
self.n_heads = n_heads
|
149 |
+
self.n_layers = n_layers
|
150 |
+
self.kernel_size = kernel_size
|
151 |
+
self.p_dropout = p_dropout
|
152 |
+
|
153 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
154 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
155 |
+
|
156 |
+
self.encoder = attentions.Encoder(
|
157 |
+
hidden_channels,
|
158 |
+
filter_channels,
|
159 |
+
n_heads,
|
160 |
+
n_layers,
|
161 |
+
kernel_size,
|
162 |
+
p_dropout)
|
163 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
164 |
+
|
165 |
+
def forward(self, x, x_lengths):
|
166 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
167 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
168 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
169 |
+
|
170 |
+
x = self.encoder(x * x_mask, x_mask)
|
171 |
+
stats = self.proj(x) * x_mask
|
172 |
+
|
173 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
174 |
+
return x, m, logs, x_mask
|
175 |
+
|
176 |
+
|
177 |
+
class ResidualCouplingBlock(nn.Module):
|
178 |
+
def __init__(self,
|
179 |
+
channels,
|
180 |
+
hidden_channels,
|
181 |
+
kernel_size,
|
182 |
+
dilation_rate,
|
183 |
+
n_layers,
|
184 |
+
n_flows=4,
|
185 |
+
gin_channels=0):
|
186 |
+
super().__init__()
|
187 |
+
self.channels = channels
|
188 |
+
self.hidden_channels = hidden_channels
|
189 |
+
self.kernel_size = kernel_size
|
190 |
+
self.dilation_rate = dilation_rate
|
191 |
+
self.n_layers = n_layers
|
192 |
+
self.n_flows = n_flows
|
193 |
+
self.gin_channels = gin_channels
|
194 |
+
|
195 |
+
self.flows = nn.ModuleList()
|
196 |
+
for i in range(n_flows):
|
197 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
198 |
+
self.flows.append(modules.Flip())
|
199 |
+
|
200 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
201 |
+
if not reverse:
|
202 |
+
for flow in self.flows:
|
203 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
204 |
+
else:
|
205 |
+
for flow in reversed(self.flows):
|
206 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class PosteriorEncoder(nn.Module):
|
211 |
+
def __init__(self,
|
212 |
+
in_channels,
|
213 |
+
out_channels,
|
214 |
+
hidden_channels,
|
215 |
+
kernel_size,
|
216 |
+
dilation_rate,
|
217 |
+
n_layers,
|
218 |
+
gin_channels=0):
|
219 |
+
super().__init__()
|
220 |
+
self.in_channels = in_channels
|
221 |
+
self.out_channels = out_channels
|
222 |
+
self.hidden_channels = hidden_channels
|
223 |
+
self.kernel_size = kernel_size
|
224 |
+
self.dilation_rate = dilation_rate
|
225 |
+
self.n_layers = n_layers
|
226 |
+
self.gin_channels = gin_channels
|
227 |
+
|
228 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
229 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
230 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
231 |
+
|
232 |
+
def forward(self, x, x_lengths, g=None):
|
233 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
234 |
+
x = self.pre(x) * x_mask
|
235 |
+
x = self.enc(x, x_mask, g=g)
|
236 |
+
stats = self.proj(x) * x_mask
|
237 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
238 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
239 |
+
return z, m, logs, x_mask
|
240 |
+
|
241 |
+
|
242 |
+
class Generator(torch.nn.Module):
|
243 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
244 |
+
super(Generator, self).__init__()
|
245 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
246 |
+
self.num_upsamples = len(upsample_rates)
|
247 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
248 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
249 |
+
|
250 |
+
self.ups = nn.ModuleList()
|
251 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
252 |
+
self.ups.append(weight_norm(
|
253 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
254 |
+
k, u, padding=(k-u)//2)))
|
255 |
+
|
256 |
+
self.resblocks = nn.ModuleList()
|
257 |
+
for i in range(len(self.ups)):
|
258 |
+
ch = upsample_initial_channel//(2**(i+1))
|
259 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
260 |
+
self.resblocks.append(resblock(ch, k, d))
|
261 |
+
|
262 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
263 |
+
self.ups.apply(init_weights)
|
264 |
+
|
265 |
+
if gin_channels != 0:
|
266 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
267 |
+
|
268 |
+
def forward(self, x, g=None):
|
269 |
+
x = self.conv_pre(x)
|
270 |
+
if g is not None:
|
271 |
+
x = x + self.cond(g)
|
272 |
+
|
273 |
+
for i in range(self.num_upsamples):
|
274 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
275 |
+
x = self.ups[i](x)
|
276 |
+
xs = None
|
277 |
+
for j in range(self.num_kernels):
|
278 |
+
if xs is None:
|
279 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
280 |
+
else:
|
281 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
x = xs / self.num_kernels
|
283 |
+
x = F.leaky_relu(x)
|
284 |
+
x = self.conv_post(x)
|
285 |
+
x = torch.tanh(x)
|
286 |
+
|
287 |
+
return x
|
288 |
+
|
289 |
+
def remove_weight_norm(self):
|
290 |
+
print('Removing weight norm...')
|
291 |
+
for l in self.ups:
|
292 |
+
remove_weight_norm(l)
|
293 |
+
for l in self.resblocks:
|
294 |
+
l.remove_weight_norm()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
class SynthesizerTrn(nn.Module):
|
299 |
+
"""
|
300 |
+
Synthesizer for Training
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self,
|
304 |
+
n_vocab,
|
305 |
+
spec_channels,
|
306 |
+
segment_size,
|
307 |
+
inter_channels,
|
308 |
+
hidden_channels,
|
309 |
+
filter_channels,
|
310 |
+
n_heads,
|
311 |
+
n_layers,
|
312 |
+
kernel_size,
|
313 |
+
p_dropout,
|
314 |
+
resblock,
|
315 |
+
resblock_kernel_sizes,
|
316 |
+
resblock_dilation_sizes,
|
317 |
+
upsample_rates,
|
318 |
+
upsample_initial_channel,
|
319 |
+
upsample_kernel_sizes,
|
320 |
+
n_speakers=0,
|
321 |
+
gin_channels=0,
|
322 |
+
use_sdp=True,
|
323 |
+
**kwargs):
|
324 |
+
|
325 |
+
super().__init__()
|
326 |
+
self.n_vocab = n_vocab
|
327 |
+
self.spec_channels = spec_channels
|
328 |
+
self.inter_channels = inter_channels
|
329 |
+
self.hidden_channels = hidden_channels
|
330 |
+
self.filter_channels = filter_channels
|
331 |
+
self.n_heads = n_heads
|
332 |
+
self.n_layers = n_layers
|
333 |
+
self.kernel_size = kernel_size
|
334 |
+
self.p_dropout = p_dropout
|
335 |
+
self.resblock = resblock
|
336 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
337 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
338 |
+
self.upsample_rates = upsample_rates
|
339 |
+
self.upsample_initial_channel = upsample_initial_channel
|
340 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
341 |
+
self.segment_size = segment_size
|
342 |
+
self.n_speakers = n_speakers
|
343 |
+
self.gin_channels = gin_channels
|
344 |
+
|
345 |
+
self.use_sdp = use_sdp
|
346 |
+
|
347 |
+
self.enc_p = TextEncoder(n_vocab,
|
348 |
+
inter_channels,
|
349 |
+
hidden_channels,
|
350 |
+
filter_channels,
|
351 |
+
n_heads,
|
352 |
+
n_layers,
|
353 |
+
kernel_size,
|
354 |
+
p_dropout)
|
355 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
356 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
357 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
358 |
+
|
359 |
+
if use_sdp:
|
360 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
361 |
+
else:
|
362 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
363 |
+
|
364 |
+
if n_speakers > 1:
|
365 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
366 |
+
|
367 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
368 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
369 |
+
if self.n_speakers > 0:
|
370 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
371 |
+
else:
|
372 |
+
g = None
|
373 |
+
|
374 |
+
if self.use_sdp:
|
375 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
376 |
+
else:
|
377 |
+
logw = self.dp(x, x_mask, g=g)
|
378 |
+
w = torch.exp(logw) * x_mask * length_scale
|
379 |
+
w_ceil = torch.ceil(w)
|
380 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
381 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
382 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
383 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
384 |
+
|
385 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
386 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
387 |
+
|
388 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
389 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
390 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
391 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
392 |
+
|
393 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
394 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
395 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
396 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
397 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
398 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
399 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
400 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
401 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
402 |
+
|
modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
preprocess_v2.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
if __name__ == "__main__":
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument("--add_auxiliary_data", type=bool, help="Whether to add extra data as fine-tuning helper")
|
7 |
+
parser.add_argument("--languages", default="CJE")
|
8 |
+
args = parser.parse_args()
|
9 |
+
if args.languages == "CJE":
|
10 |
+
langs = ["[ZH]", "[JA]", "[EN]"]
|
11 |
+
elif args.languages == "CJ":
|
12 |
+
langs = ["[ZH]", "[JA]"]
|
13 |
+
elif args.languages == "C":
|
14 |
+
langs = ["[ZH]"]
|
15 |
+
new_annos = []
|
16 |
+
# Source 1: transcribed short audios
|
17 |
+
if os.path.exists("short_character_anno.txt"):
|
18 |
+
with open("short_character_anno.txt", 'r', encoding='utf-8') as f:
|
19 |
+
short_character_anno = f.readlines()
|
20 |
+
new_annos += short_character_anno
|
21 |
+
# Source 2: transcribed long audio segments
|
22 |
+
if os.path.exists("long_character_anno.txt"):
|
23 |
+
with open("long_character_anno.txt", 'r', encoding='utf-8') as f:
|
24 |
+
long_character_anno = f.readlines()
|
25 |
+
new_annos += long_character_anno
|
26 |
+
|
27 |
+
# Get all speaker names
|
28 |
+
speakers = []
|
29 |
+
for line in new_annos:
|
30 |
+
path, speaker, text = line.split("|")
|
31 |
+
if speaker not in speakers:
|
32 |
+
speakers.append(speaker)
|
33 |
+
assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure."
|
34 |
+
# Source 3 (Optional): sampled audios as extra training helpers
|
35 |
+
if args.add_auxiliary_data:
|
36 |
+
with open("sampled_audio4ft.txt", 'r', encoding='utf-8') as f:
|
37 |
+
old_annos = f.readlines()
|
38 |
+
# filter old_annos according to supported languages
|
39 |
+
filtered_old_annos = []
|
40 |
+
for line in old_annos:
|
41 |
+
for lang in langs:
|
42 |
+
if lang in line:
|
43 |
+
filtered_old_annos.append(line)
|
44 |
+
old_annos = filtered_old_annos
|
45 |
+
for line in old_annos:
|
46 |
+
path, speaker, text = line.split("|")
|
47 |
+
if speaker not in speakers:
|
48 |
+
speakers.append(speaker)
|
49 |
+
num_old_voices = len(old_annos)
|
50 |
+
num_new_voices = len(new_annos)
|
51 |
+
# STEP 1: balance number of new & old voices
|
52 |
+
cc_duplicate = num_old_voices // num_new_voices
|
53 |
+
if cc_duplicate == 0:
|
54 |
+
cc_duplicate = 1
|
55 |
+
|
56 |
+
|
57 |
+
# STEP 2: modify config file
|
58 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
59 |
+
hps = json.load(f)
|
60 |
+
|
61 |
+
# assign ids to new speakers
|
62 |
+
speaker2id = {}
|
63 |
+
for i, speaker in enumerate(speakers):
|
64 |
+
speaker2id[speaker] = i
|
65 |
+
# modify n_speakers
|
66 |
+
hps['data']["n_speakers"] = len(speakers)
|
67 |
+
# overwrite speaker names
|
68 |
+
hps['speakers'] = speaker2id
|
69 |
+
hps['train']['log_interval'] = 100
|
70 |
+
hps['train']['eval_interval'] = 1000
|
71 |
+
hps['train']['batch_size'] = 16
|
72 |
+
hps['data']['training_files'] = "final_annotation_train.txt"
|
73 |
+
hps['data']['validation_files'] = "final_annotation_val.txt"
|
74 |
+
# save modified config
|
75 |
+
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
76 |
+
json.dump(hps, f, indent=2)
|
77 |
+
|
78 |
+
# STEP 3: clean annotations, replace speaker names with assigned speaker IDs
|
79 |
+
import text
|
80 |
+
cleaned_new_annos = []
|
81 |
+
for i, line in enumerate(new_annos):
|
82 |
+
path, speaker, txt = line.split("|")
|
83 |
+
if len(txt) > 150:
|
84 |
+
continue
|
85 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
86 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
87 |
+
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
88 |
+
cleaned_old_annos = []
|
89 |
+
for i, line in enumerate(old_annos):
|
90 |
+
path, speaker, txt = line.split("|")
|
91 |
+
if len(txt) > 150:
|
92 |
+
continue
|
93 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
94 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
95 |
+
cleaned_old_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
96 |
+
# merge with old annotation
|
97 |
+
final_annos = cleaned_old_annos + cc_duplicate * cleaned_new_annos
|
98 |
+
# save annotation file
|
99 |
+
with open("final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
100 |
+
for line in final_annos:
|
101 |
+
f.write(line)
|
102 |
+
# save annotation file for validation
|
103 |
+
with open("final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
104 |
+
for line in cleaned_new_annos:
|
105 |
+
f.write(line)
|
106 |
+
print("finished")
|
107 |
+
else:
|
108 |
+
# Do not add extra helper data
|
109 |
+
# STEP 1: modify config file
|
110 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
111 |
+
hps = json.load(f)
|
112 |
+
|
113 |
+
# assign ids to new speakers
|
114 |
+
speaker2id = {}
|
115 |
+
for i, speaker in enumerate(speakers):
|
116 |
+
speaker2id[speaker] = i
|
117 |
+
# modify n_speakers
|
118 |
+
hps['data']["n_speakers"] = len(speakers)
|
119 |
+
# overwrite speaker names
|
120 |
+
hps['speakers'] = speaker2id
|
121 |
+
hps['train']['log_interval'] = 10
|
122 |
+
hps['train']['eval_interval'] = 100
|
123 |
+
hps['train']['batch_size'] = 16
|
124 |
+
hps['data']['training_files'] = "final_annotation_train.txt"
|
125 |
+
hps['data']['validation_files'] = "final_annotation_val.txt"
|
126 |
+
# save modified config
|
127 |
+
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
128 |
+
json.dump(hps, f, indent=2)
|
129 |
+
|
130 |
+
# STEP 2: clean annotations, replace speaker names with assigned speaker IDs
|
131 |
+
import text
|
132 |
+
|
133 |
+
cleaned_new_annos = []
|
134 |
+
for i, line in enumerate(new_annos):
|
135 |
+
path, speaker, txt = line.split("|")
|
136 |
+
if len(txt) > 150:
|
137 |
+
continue
|
138 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "")
|
139 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
140 |
+
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
141 |
+
|
142 |
+
final_annos = cleaned_new_annos
|
143 |
+
# save annotation file
|
144 |
+
with open("final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
145 |
+
for line in final_annos:
|
146 |
+
f.write(line)
|
147 |
+
# save annotation file for validation
|
148 |
+
with open("final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
149 |
+
for line in cleaned_new_annos:
|
150 |
+
f.write(line)
|
151 |
+
print("finished")
|
rearrange_speaker.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--model_dir", type=str, default="./OUTPUT_MODEL/G_latest.pth")
|
8 |
+
parser.add_argument("--config_dir", type=str, default="./configs/modified_finetune_speaker.json")
|
9 |
+
args = parser.parse_args()
|
10 |
+
|
11 |
+
model_sd = torch.load(args.model_dir, map_location='cpu')
|
12 |
+
with open(args.config_dir, 'r', encoding='utf-8') as f:
|
13 |
+
hps = json.load(f)
|
14 |
+
|
15 |
+
valid_speakers = list(hps['speakers'].keys())
|
16 |
+
if hps['data']['n_speakers'] > len(valid_speakers):
|
17 |
+
new_emb_g = torch.zeros([len(valid_speakers), 256])
|
18 |
+
old_emb_g = model_sd['model']['emb_g.weight']
|
19 |
+
for i, speaker in enumerate(valid_speakers):
|
20 |
+
new_emb_g[i, :] = old_emb_g[hps['speakers'][speaker], :]
|
21 |
+
hps['speakers'][speaker] = i
|
22 |
+
hps['data']['n_speakers'] = len(valid_speakers)
|
23 |
+
model_sd['model']['emb_g.weight'] = new_emb_g
|
24 |
+
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
25 |
+
json.dump(hps, f, indent=2)
|
26 |
+
torch.save(model_sd, "./G_latest.pth")
|
27 |
+
else:
|
28 |
+
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
29 |
+
json.dump(hps, f, indent=2)
|
30 |
+
torch.save(model_sd, "./G_latest.pth")
|
31 |
+
# save another config file copy in MoeGoe format
|
32 |
+
hps['speakers'] = valid_speakers
|
33 |
+
with open("./moegoe_config.json", 'w', encoding='utf-8') as f:
|
34 |
+
json.dump(hps, f, indent=2)
|
35 |
+
|
36 |
+
|
37 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython
|
2 |
+
librosa==0.9.1
|
3 |
+
numpy
|
4 |
+
scipy
|
5 |
+
tensorboard
|
6 |
+
torch==1.13.1
|
7 |
+
torchvision==0.14.1
|
8 |
+
torchaudio==0.13.1
|
9 |
+
unidecode
|
10 |
+
pyopenjtalk
|
11 |
+
jamo
|
12 |
+
pypinyin
|
13 |
+
jieba
|
14 |
+
protobuf
|
15 |
+
cn2an
|
16 |
+
inflect
|
17 |
+
eng_to_ipa
|
18 |
+
ko_pron
|
19 |
+
indic_transliteration==2.3.37
|
20 |
+
num_thai==0.0.5
|
21 |
+
opencc==1.1.1
|
22 |
+
demucs
|
23 |
+
openai-whisper
|
24 |
+
gradio
|
short_audio_transcribe.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import os
|
3 |
+
import torchaudio
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
|
7 |
+
lang2token = {
|
8 |
+
'zh': "[ZH]",
|
9 |
+
'ja': "[JA]",
|
10 |
+
"en": "[EN]",
|
11 |
+
}
|
12 |
+
def transcribe_one(audio_path):
|
13 |
+
# load audio and pad/trim it to fit 30 seconds
|
14 |
+
audio = whisper.load_audio(audio_path)
|
15 |
+
audio = whisper.pad_or_trim(audio)
|
16 |
+
|
17 |
+
# make log-Mel spectrogram and move to the same device as the model
|
18 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
19 |
+
|
20 |
+
# detect the spoken language
|
21 |
+
_, probs = model.detect_language(mel)
|
22 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
23 |
+
lang = max(probs, key=probs.get)
|
24 |
+
# decode the audio
|
25 |
+
options = whisper.DecodingOptions()
|
26 |
+
result = whisper.decode(model, mel, options)
|
27 |
+
|
28 |
+
# print the recognized text
|
29 |
+
print(result.text)
|
30 |
+
return lang, result.text
|
31 |
+
if __name__ == "__main__":
|
32 |
+
parser = argparse.ArgumentParser()
|
33 |
+
parser.add_argument("--languages", default="CJE")
|
34 |
+
parser.add_argument("--whisper_size", default="medium")
|
35 |
+
args = parser.parse_args()
|
36 |
+
if args.languages == "CJE":
|
37 |
+
lang2token = {
|
38 |
+
'zh': "[ZH]",
|
39 |
+
'ja': "[JA]",
|
40 |
+
"en": "[EN]",
|
41 |
+
}
|
42 |
+
elif args.languages == "CJ":
|
43 |
+
lang2token = {
|
44 |
+
'zh': "[ZH]",
|
45 |
+
'ja': "[JA]",
|
46 |
+
}
|
47 |
+
elif args.languages == "C":
|
48 |
+
lang2token = {
|
49 |
+
'zh': "[ZH]",
|
50 |
+
}
|
51 |
+
assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
52 |
+
model = whisper.load_model(args.whisper_size)
|
53 |
+
parent_dir = "./custom_character_voice/"
|
54 |
+
speaker_names = list(os.walk(parent_dir))[0][1]
|
55 |
+
speaker_annos = []
|
56 |
+
# resample audios
|
57 |
+
for speaker in speaker_names:
|
58 |
+
for i, wavfile in enumerate(list(os.walk(parent_dir + speaker))[0][2]):
|
59 |
+
# try to load file as audio
|
60 |
+
if wavfile.startswith("processed_"):
|
61 |
+
continue
|
62 |
+
try:
|
63 |
+
wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,
|
64 |
+
channels_first=True)
|
65 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
66 |
+
if sr != 22050:
|
67 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)(wav)
|
68 |
+
if wav.shape[1] / sr > 20:
|
69 |
+
print(f"{wavfile} too long, ignoring\n")
|
70 |
+
save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"
|
71 |
+
torchaudio.save(save_path, wav, 22050, channels_first=True)
|
72 |
+
# transcribe text
|
73 |
+
lang, text = transcribe_one(save_path)
|
74 |
+
if lang not in list(lang2token.keys()):
|
75 |
+
print(f"{lang} not supported, ignoring\n")
|
76 |
+
continue
|
77 |
+
text = lang2token[lang] + text + lang2token[lang] + "\n"
|
78 |
+
speaker_annos.append(save_path + "|" + speaker + "|" + text)
|
79 |
+
except:
|
80 |
+
continue
|
81 |
+
|
82 |
+
# # clean annotation
|
83 |
+
# import argparse
|
84 |
+
# import text
|
85 |
+
# from utils import load_filepaths_and_text
|
86 |
+
# for i, line in enumerate(speaker_annos):
|
87 |
+
# path, sid, txt = line.split("|")
|
88 |
+
# cleaned_text = text._clean_text(txt, ["cjke_cleaners2"])
|
89 |
+
# cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
90 |
+
# speaker_annos[i] = path + "|" + sid + "|" + cleaned_text
|
91 |
+
# write into annotation
|
92 |
+
if len(speaker_annos) == 0:
|
93 |
+
print("Warning: no short audios found, this IS expected if you have only uploaded long audios, videos or video links.")
|
94 |
+
print("this IS NOT expected if you have uploaded a zip file of short audios. Please check your file structure or make sure your audio language is supported.")
|
95 |
+
with open("short_character_anno.txt", 'w', encoding='utf-8') as f:
|
96 |
+
for line in speaker_annos:
|
97 |
+
f.write(line)
|
98 |
+
|
99 |
+
# import json
|
100 |
+
# # generate new config
|
101 |
+
# with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
102 |
+
# hps = json.load(f)
|
103 |
+
# # modify n_speakers
|
104 |
+
# hps['data']["n_speakers"] = 1000 + len(speaker2id)
|
105 |
+
# # add speaker names
|
106 |
+
# for speaker in speaker_names:
|
107 |
+
# hps['speakers'][speaker] = speaker2id[speaker]
|
108 |
+
# # save modified config
|
109 |
+
# with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
110 |
+
# json.dump(hps, f, indent=2)
|
111 |
+
# print("finished")
|
transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
utils.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from scipy.io.wavfile import read
|
10 |
+
import torch
|
11 |
+
import regex as re
|
12 |
+
|
13 |
+
MATPLOTLIB_FLAG = False
|
14 |
+
|
15 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
16 |
+
logger = logging
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
zh_pattern = re.compile(r'[\u4e00-\u9fa5]')
|
21 |
+
en_pattern = re.compile(r'[a-zA-Z]')
|
22 |
+
jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]')
|
23 |
+
kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]')
|
24 |
+
num_pattern=re.compile(r'[0-9]')
|
25 |
+
comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度
|
26 |
+
tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'}
|
27 |
+
|
28 |
+
def tag_cjke(text):
|
29 |
+
'''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况'''
|
30 |
+
sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点
|
31 |
+
sentences.append("")
|
32 |
+
sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])]
|
33 |
+
# print(sentences)
|
34 |
+
prev_lang=None
|
35 |
+
tagged_text = ""
|
36 |
+
for s in sentences:
|
37 |
+
#全为符号跳过
|
38 |
+
nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip()
|
39 |
+
if len(nu)==0:
|
40 |
+
continue
|
41 |
+
s = re.sub(r'[()()《》「」【】‘“”’]+', '', s)
|
42 |
+
jp=re.findall(jp_pattern, s)
|
43 |
+
#本句含日语字符判断为日语
|
44 |
+
if len(jp)>0:
|
45 |
+
prev_lang,tagged_jke=tag_jke(s,prev_lang)
|
46 |
+
tagged_text +=tagged_jke
|
47 |
+
else:
|
48 |
+
prev_lang,tagged_cke=tag_cke(s,prev_lang)
|
49 |
+
tagged_text +=tagged_cke
|
50 |
+
return tagged_text
|
51 |
+
|
52 |
+
def tag_jke(text,prev_sentence=None):
|
53 |
+
'''为英日韩加tag'''
|
54 |
+
# 初始化标记变量
|
55 |
+
tagged_text = ""
|
56 |
+
prev_lang = None
|
57 |
+
tagged=0
|
58 |
+
# 遍历文本
|
59 |
+
for char in text:
|
60 |
+
# 判断当前字符属于哪种语言
|
61 |
+
if jp_pattern.match(char):
|
62 |
+
lang = "JP"
|
63 |
+
elif zh_pattern.match(char):
|
64 |
+
lang = "JP"
|
65 |
+
elif kr_pattern.match(char):
|
66 |
+
lang = "KR"
|
67 |
+
elif en_pattern.match(char):
|
68 |
+
lang = "EN"
|
69 |
+
# elif num_pattern.match(char):
|
70 |
+
# lang = prev_sentence
|
71 |
+
else:
|
72 |
+
lang = None
|
73 |
+
tagged_text += char
|
74 |
+
continue
|
75 |
+
# 如果当前语言与上一个语言不同,就添加标记
|
76 |
+
if lang != prev_lang:
|
77 |
+
tagged=1
|
78 |
+
if prev_lang==None: # 开头
|
79 |
+
tagged_text =tags[lang]+tagged_text
|
80 |
+
else:
|
81 |
+
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
82 |
+
|
83 |
+
# 重置标记变量
|
84 |
+
prev_lang = lang
|
85 |
+
|
86 |
+
# 添加当前字符到标记文本中
|
87 |
+
tagged_text += char
|
88 |
+
|
89 |
+
# 在最后一个语言的结尾添加对应的标记
|
90 |
+
if prev_lang:
|
91 |
+
tagged_text += tags[prev_lang]
|
92 |
+
if not tagged:
|
93 |
+
prev_lang=prev_sentence
|
94 |
+
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
95 |
+
|
96 |
+
return prev_lang,tagged_text
|
97 |
+
|
98 |
+
def tag_cke(text,prev_sentence=None):
|
99 |
+
'''为中英韩加tag'''
|
100 |
+
# 初始化标记变量
|
101 |
+
tagged_text = ""
|
102 |
+
prev_lang = None
|
103 |
+
# 是否全略过未标签
|
104 |
+
tagged=0
|
105 |
+
|
106 |
+
# 遍历文本
|
107 |
+
for char in text:
|
108 |
+
# 判断当前字符属于哪种语言
|
109 |
+
if zh_pattern.match(char):
|
110 |
+
lang = "ZH"
|
111 |
+
elif kr_pattern.match(char):
|
112 |
+
lang = "KR"
|
113 |
+
elif en_pattern.match(char):
|
114 |
+
lang = "EN"
|
115 |
+
# elif num_pattern.match(char):
|
116 |
+
# lang = prev_sentence
|
117 |
+
else:
|
118 |
+
# 略过
|
119 |
+
lang = None
|
120 |
+
tagged_text += char
|
121 |
+
continue
|
122 |
+
|
123 |
+
# 如果当前语言与上一个语言不同,添加标记
|
124 |
+
if lang != prev_lang:
|
125 |
+
tagged=1
|
126 |
+
if prev_lang==None: # 开头
|
127 |
+
tagged_text =tags[lang]+tagged_text
|
128 |
+
else:
|
129 |
+
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
130 |
+
|
131 |
+
# 重置标记变量
|
132 |
+
prev_lang = lang
|
133 |
+
|
134 |
+
# 添加当前字符到标记文本中
|
135 |
+
tagged_text += char
|
136 |
+
|
137 |
+
# 在最后一个语言的结尾添加对应的标记
|
138 |
+
if prev_lang:
|
139 |
+
tagged_text += tags[prev_lang]
|
140 |
+
# 未标签则继承上一句标签
|
141 |
+
if tagged==0:
|
142 |
+
prev_lang=prev_sentence
|
143 |
+
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
144 |
+
return prev_lang,tagged_text
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False):
|
149 |
+
assert os.path.isfile(checkpoint_path)
|
150 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
151 |
+
iteration = checkpoint_dict['iteration']
|
152 |
+
learning_rate = checkpoint_dict['learning_rate']
|
153 |
+
if optimizer is not None:
|
154 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
155 |
+
saved_state_dict = checkpoint_dict['model']
|
156 |
+
if hasattr(model, 'module'):
|
157 |
+
state_dict = model.module.state_dict()
|
158 |
+
else:
|
159 |
+
state_dict = model.state_dict()
|
160 |
+
new_state_dict = {}
|
161 |
+
for k, v in state_dict.items():
|
162 |
+
try:
|
163 |
+
if k == 'emb_g.weight':
|
164 |
+
if drop_speaker_emb:
|
165 |
+
new_state_dict[k] = v
|
166 |
+
continue
|
167 |
+
v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k]
|
168 |
+
new_state_dict[k] = v
|
169 |
+
else:
|
170 |
+
new_state_dict[k] = saved_state_dict[k]
|
171 |
+
except:
|
172 |
+
logger.info("%s is not in the checkpoint" % k)
|
173 |
+
new_state_dict[k] = v
|
174 |
+
if hasattr(model, 'module'):
|
175 |
+
model.module.load_state_dict(new_state_dict)
|
176 |
+
else:
|
177 |
+
model.load_state_dict(new_state_dict)
|
178 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
179 |
+
checkpoint_path, iteration))
|
180 |
+
return model, optimizer, learning_rate, iteration
|
181 |
+
|
182 |
+
|
183 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
184 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
185 |
+
iteration, checkpoint_path))
|
186 |
+
if hasattr(model, 'module'):
|
187 |
+
state_dict = model.module.state_dict()
|
188 |
+
else:
|
189 |
+
state_dict = model.state_dict()
|
190 |
+
torch.save({'model': state_dict,
|
191 |
+
'iteration': iteration,
|
192 |
+
'optimizer': optimizer.state_dict() if optimizer is not None else None,
|
193 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
194 |
+
|
195 |
+
|
196 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
197 |
+
for k, v in scalars.items():
|
198 |
+
writer.add_scalar(k, v, global_step)
|
199 |
+
for k, v in histograms.items():
|
200 |
+
writer.add_histogram(k, v, global_step)
|
201 |
+
for k, v in images.items():
|
202 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
203 |
+
for k, v in audios.items():
|
204 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
205 |
+
|
206 |
+
|
207 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
208 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
209 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
210 |
+
x = f_list[-1]
|
211 |
+
print(x)
|
212 |
+
return x
|
213 |
+
|
214 |
+
|
215 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
216 |
+
global MATPLOTLIB_FLAG
|
217 |
+
if not MATPLOTLIB_FLAG:
|
218 |
+
import matplotlib
|
219 |
+
matplotlib.use("Agg")
|
220 |
+
MATPLOTLIB_FLAG = True
|
221 |
+
mpl_logger = logging.getLogger('matplotlib')
|
222 |
+
mpl_logger.setLevel(logging.WARNING)
|
223 |
+
import matplotlib.pylab as plt
|
224 |
+
import numpy as np
|
225 |
+
|
226 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
227 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
228 |
+
interpolation='none')
|
229 |
+
plt.colorbar(im, ax=ax)
|
230 |
+
plt.xlabel("Frames")
|
231 |
+
plt.ylabel("Channels")
|
232 |
+
plt.tight_layout()
|
233 |
+
|
234 |
+
fig.canvas.draw()
|
235 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
236 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
237 |
+
plt.close()
|
238 |
+
return data
|
239 |
+
|
240 |
+
|
241 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
242 |
+
global MATPLOTLIB_FLAG
|
243 |
+
if not MATPLOTLIB_FLAG:
|
244 |
+
import matplotlib
|
245 |
+
matplotlib.use("Agg")
|
246 |
+
MATPLOTLIB_FLAG = True
|
247 |
+
mpl_logger = logging.getLogger('matplotlib')
|
248 |
+
mpl_logger.setLevel(logging.WARNING)
|
249 |
+
import matplotlib.pylab as plt
|
250 |
+
import numpy as np
|
251 |
+
|
252 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
253 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
254 |
+
interpolation='none')
|
255 |
+
fig.colorbar(im, ax=ax)
|
256 |
+
xlabel = 'Decoder timestep'
|
257 |
+
if info is not None:
|
258 |
+
xlabel += '\n\n' + info
|
259 |
+
plt.xlabel(xlabel)
|
260 |
+
plt.ylabel('Encoder timestep')
|
261 |
+
plt.tight_layout()
|
262 |
+
|
263 |
+
fig.canvas.draw()
|
264 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
265 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
266 |
+
plt.close()
|
267 |
+
return data
|
268 |
+
|
269 |
+
|
270 |
+
def load_wav_to_torch(full_path):
|
271 |
+
sampling_rate, data = read(full_path)
|
272 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
273 |
+
|
274 |
+
|
275 |
+
def load_filepaths_and_text(filename, split="|"):
|
276 |
+
with open(filename, encoding='utf-8') as f:
|
277 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
278 |
+
return filepaths_and_text
|
279 |
+
|
280 |
+
|
281 |
+
def get_hparams(init=True):
|
282 |
+
parser = argparse.ArgumentParser()
|
283 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json",
|
284 |
+
help='JSON file for configuration')
|
285 |
+
parser.add_argument('-m', '--model', type=str, default="pretrained_models",
|
286 |
+
help='Model name')
|
287 |
+
parser.add_argument('-n', '--max_epochs', type=int, default=50,
|
288 |
+
help='finetune epochs')
|
289 |
+
parser.add_argument('--drop_speaker_embed', type=bool, default=False, help='whether to drop existing characters')
|
290 |
+
|
291 |
+
args = parser.parse_args()
|
292 |
+
model_dir = os.path.join("./", args.model)
|
293 |
+
|
294 |
+
if not os.path.exists(model_dir):
|
295 |
+
os.makedirs(model_dir)
|
296 |
+
|
297 |
+
config_path = args.config
|
298 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
299 |
+
if init:
|
300 |
+
with open(config_path, "r") as f:
|
301 |
+
data = f.read()
|
302 |
+
with open(config_save_path, "w") as f:
|
303 |
+
f.write(data)
|
304 |
+
else:
|
305 |
+
with open(config_save_path, "r") as f:
|
306 |
+
data = f.read()
|
307 |
+
config = json.loads(data)
|
308 |
+
|
309 |
+
hparams = HParams(**config)
|
310 |
+
hparams.model_dir = model_dir
|
311 |
+
hparams.max_epochs = args.max_epochs
|
312 |
+
hparams.drop_speaker_embed = args.drop_speaker_embed
|
313 |
+
return hparams
|
314 |
+
|
315 |
+
|
316 |
+
def get_hparams_from_dir(model_dir):
|
317 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
318 |
+
with open(config_save_path, "r") as f:
|
319 |
+
data = f.read()
|
320 |
+
config = json.loads(data)
|
321 |
+
|
322 |
+
hparams = HParams(**config)
|
323 |
+
hparams.model_dir = model_dir
|
324 |
+
return hparams
|
325 |
+
|
326 |
+
|
327 |
+
def get_hparams_from_file(config_path):
|
328 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
329 |
+
data = f.read()
|
330 |
+
config = json.loads(data)
|
331 |
+
|
332 |
+
hparams = HParams(**config)
|
333 |
+
return hparams
|
334 |
+
|
335 |
+
|
336 |
+
def check_git_hash(model_dir):
|
337 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
338 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
339 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
340 |
+
source_dir
|
341 |
+
))
|
342 |
+
return
|
343 |
+
|
344 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
345 |
+
|
346 |
+
path = os.path.join(model_dir, "githash")
|
347 |
+
if os.path.exists(path):
|
348 |
+
saved_hash = open(path).read()
|
349 |
+
if saved_hash != cur_hash:
|
350 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
351 |
+
saved_hash[:8], cur_hash[:8]))
|
352 |
+
else:
|
353 |
+
open(path, "w").write(cur_hash)
|
354 |
+
|
355 |
+
|
356 |
+
def get_logger(model_dir, filename="train.log"):
|
357 |
+
global logger
|
358 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
359 |
+
logger.setLevel(logging.DEBUG)
|
360 |
+
|
361 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
362 |
+
if not os.path.exists(model_dir):
|
363 |
+
os.makedirs(model_dir)
|
364 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
365 |
+
h.setLevel(logging.DEBUG)
|
366 |
+
h.setFormatter(formatter)
|
367 |
+
logger.addHandler(h)
|
368 |
+
return logger
|
369 |
+
|
370 |
+
|
371 |
+
class HParams():
|
372 |
+
def __init__(self, **kwargs):
|
373 |
+
for k, v in kwargs.items():
|
374 |
+
if type(v) == dict:
|
375 |
+
v = HParams(**v)
|
376 |
+
self[k] = v
|
377 |
+
|
378 |
+
def keys(self):
|
379 |
+
return self.__dict__.keys()
|
380 |
+
|
381 |
+
def items(self):
|
382 |
+
return self.__dict__.items()
|
383 |
+
|
384 |
+
def values(self):
|
385 |
+
return self.__dict__.values()
|
386 |
+
|
387 |
+
def __len__(self):
|
388 |
+
return len(self.__dict__)
|
389 |
+
|
390 |
+
def __getitem__(self, key):
|
391 |
+
return getattr(self, key)
|
392 |
+
|
393 |
+
def __setitem__(self, key, value):
|
394 |
+
return setattr(self, key, value)
|
395 |
+
|
396 |
+
def __contains__(self, key):
|
397 |
+
return key in self.__dict__
|
398 |
+
|
399 |
+
def __repr__(self):
|
400 |
+
return self.__dict__.__repr__()
|
video2audio.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from concurrent.futures import ThreadPoolExecutor
|
3 |
+
|
4 |
+
from moviepy.editor import AudioFileClip
|
5 |
+
|
6 |
+
video_dir = "./video_data/"
|
7 |
+
audio_dir = "./raw_audio/"
|
8 |
+
filelist = list(os.walk(video_dir))[0][2]
|
9 |
+
|
10 |
+
|
11 |
+
def generate_infos():
|
12 |
+
videos = []
|
13 |
+
for file in filelist:
|
14 |
+
if file.endswith(".mp4"):
|
15 |
+
videos.append(file)
|
16 |
+
return videos
|
17 |
+
|
18 |
+
|
19 |
+
def clip_file(file):
|
20 |
+
my_audio_clip = AudioFileClip(video_dir + file)
|
21 |
+
my_audio_clip.write_audiofile(audio_dir + file.rstrip(".mp4") + ".wav")
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
infos = generate_infos()
|
26 |
+
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
27 |
+
executor.map(clip_file, infos)
|
voice_upload.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.colab import files
|
2 |
+
import shutil
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
if __name__ == "__main__":
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--type", type=str, required=True, help="type of file to upload")
|
8 |
+
args = parser.parse_args()
|
9 |
+
file_type = args.type
|
10 |
+
|
11 |
+
basepath = os.getcwd()
|
12 |
+
uploaded = files.upload() # 上传文件
|
13 |
+
assert(file_type in ['zip', 'audio', 'video'])
|
14 |
+
if file_type == "zip":
|
15 |
+
upload_path = "./custom_character_voice/"
|
16 |
+
for filename in uploaded.keys():
|
17 |
+
#将上传的文件移动到指定的位置上
|
18 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, "custom_character_voice.zip"))
|
19 |
+
elif file_type == "audio":
|
20 |
+
upload_path = "./raw_audio/"
|
21 |
+
for filename in uploaded.keys():
|
22 |
+
#将上传的文件移动到指定的位置上
|
23 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, filename))
|
24 |
+
elif file_type == "video":
|
25 |
+
upload_path = "./video_data/"
|
26 |
+
for filename in uploaded.keys():
|
27 |
+
# 将上传的文件移动到指定的位置上
|
28 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, filename))
|