Spaces:
Sleeping
Sleeping
File size: 8,030 Bytes
93e1b64 27d40b9 52ee7a9 93e1b64 1f35211 93e1b64 9b5c4aa 27d40b9 9b5c4aa 27d40b9 93e1b64 27d40b9 ee05396 9b5c4aa 1e2e3b8 9b5c4aa 1e2e3b8 9b5c4aa 1e2e3b8 9b5c4aa 1e2e3b8 9b5c4aa 1e2e3b8 9b5c4aa 1e2e3b8 9b5c4aa ee05396 1e2e3b8 52ee7a9 1e2e3b8 52ee7a9 9b5c4aa 1e2e3b8 9b5c4aa 93e1b64 9b5c4aa 93e1b64 9b5c4aa 93e1b64 9b5c4aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import streamlit as st
from streamlit_agraph import agraph, Node, Edge, Config
import os
from sqlalchemy import create_engine, text
import pandas as pd
import time
from utils import (
get_all_diseases_name,
get_most_similar_diseases_from_uri,
get_uri_from_name,
get_diseases_related_to_a_textual_description,
get_similarities_among_diseases_uris,
augment_the_set_of_diseaces,
get_clinical_trials_related_to_diseases,
get_clinical_records_by_ids
)
from llm_res import get_short_summary_out_of_json_files
import json
import numpy as np
from sentence_transformers import SentenceTransformer
# variables to reveal next steps
show_graph = False
show_analyze_status = False
show_overview = False
show_details = False
# IRIS connection
username = "demo"
password = "demo"
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
port = "1972"
namespace = "USER"
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
engine = create_engine(CONNECTION_STRING)
st.image("img_klinic.jpeg", caption="(AI-generated image)", use_column_width=True)
st.title("Klìnic", help="AI-powered clinical trial search engine")
with st.container(): # user input
col1, col2 = st.columns((6, 1))
with col1:
description_input = st.text_area(label="Enter the disease description 👇", placeholder='A disease that causes memory loss and other cognitive impairments.')
with col2:
st.text('') # dummy to center vertically
st.text('') # dummy to center vertically
st.text('') # dummy to center vertically
show_analyze_status = st.button("Analyze 🔎")
# analyze
with st.container():
if show_analyze_status:
with st.status("Analyzing...") as status:
# 1. Embed the textual description that the user entered using the model
# 2. Get 5 diseases with the highest cosine silimarity from the DB
status.write("Analyzing the description that you wrote...")
encoder = SentenceTransformer("allenai-specter")
diseases_related_to_the_user_text = get_diseases_related_to_a_textual_description(
description_input, encoder
)
# 3. Get the similarities of the embeddings of those diseases (cosine similarity of the embeddings of the nodes of such diseases)
status.write("Getting the similarities among the diseases to filter out less promising ones...")
diseases_uris = [disease["uri"] for disease in diseases_related_to_the_user_text]
get_similarities_among_diseases_uris(diseases_uris)
# 4. Potentially filter out the diseases that are not similar enough (e.g. similarity < 0.8)
# 5. Augment the set of diseases: add new diseases that are similar to the ones that are already in the set, until we get 10-15 diseases
status.write("Augmenting the set of diseases by finding others with related embeddings...")
augmented_set_of_diseases = augment_the_set_of_diseaces(diseases_uris)
# print(augmented_set_of_diseases)
# 6. Query the embeddings of the diseases related to each clinical trial (also in the DB), to get the most similar clinical trials to our set of diseases
status.write("Getting the clinical trials related to the diseases found...")
clinical_trials_related_to_the_diseases = get_clinical_trials_related_to_diseases(
augmented_set_of_diseases, encoder
)
status.write("Getting the details of the clinical trials...")
json_of_clinical_trials = get_clinical_records_by_ids(
[trial["nct_id"] for trial in clinical_trials_related_to_the_diseases]
)
status.json(json_of_clinical_trials, expanded=False)
# 7. Use an LLM to get a summary of the clinical trials, in plain text format.
status.write("Getting a summary of the clinical trials...")
response = get_short_summary_out_of_json_files(json_of_clinical_trials)
print(f'Response from LLM: {response}')
status.write(f'Response from LLM: {response}')
# 8. Use an LLM to extract numerical data from the clinical trials (e.g. number of patients, number of deaths, etc.). Get summary statistics out of that.
status.write("Getting summary statistics of the clinical trials...")
# 9. Show the results to the user: graph of the diseases chosen, summary of the clinical trials, summary statistics of the clinical trials, and list of the details of the clinical trials considered
status.update(label="Done!", state="complete")
time.sleep(1)
show_graph = True
# graph
with st.container():
if show_graph:
# TODO actual graph
graph_of_diseases = agraph(
nodes=[
Node(id="A", label="Node A", size=10),
Node(id="B", label="Node B", size=10),
Node(id="C", label="Node C", size=10),
Node(id="D", label="Node D", size=10),
Node(id="E", label="Node E", size=10),
Node(id="F", label="Node F", size=10),
Node(id="G", label="Node G", size=10),
Node(id="H", label="Node H", size=10),
Node(id="I", label="Node I", size=10),
Node(id="J", label="Node J", size=10),
],
edges=[
Edge(source="A", target="B"),
Edge(source="B", target="C"),
Edge(source="C", target="D"),
Edge(source="D", target="E"),
Edge(source="E", target="F"),
Edge(source="F", target="G"),
Edge(source="G", target="H"),
Edge(source="H", target="I"),
Edge(source="I", target="J"),
],
config=Config(height=500, width=500),
)
time.sleep(2)
show_overview = True
# overview
with st.container():
if show_overview:
st.write("## Disease Overview")
disease_overview = ":red[lorem ipsum]" # TODO
st.write(disease_overview)
time.sleep(2)
show_details = True
# details
with st.container():
if show_details:
st.write("## Clinical Trials Details")
trials = []
# TODO replace mock data
with open("mock_trial.json") as f:
d = json.load(f)
for i in range(0, 5):
trials.append(d)
for trial in trials:
with st.expander(f"{trial['protocolSection']['identificationModule']['nctId']}"):
official_title = trial["protocolSection"]["identificationModule"][
"officialTitle"
]
st.write(f"##### {official_title}")
brief_summary = trial["protocolSection"]["descriptionModule"]["briefSummary"]
st.write(brief_summary)
status_module = {
"Status": trial["protocolSection"]["statusModule"]["overallStatus"],
"Status Date": trial["protocolSection"]["statusModule"][
"statusVerifiedDate"
],
}
st.write("###### Status")
st.table(status_module)
design_module = {
"Study Type": trial["protocolSection"]["designModule"]["studyType"],
# "Phases": trial["protocolSection"]["designModule"]["phases"], # breaks formatting because it is an array
"Allocation": trial["protocolSection"]["designModule"]["designInfo"][
"allocation"
],
"Participants": trial["protocolSection"]["designModule"]["enrollmentInfo"][
"count"
],
}
st.write("###### Design")
st.table(design_module)
# TODO more modules?
|