Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import copy | |
import matplotlib | |
import matplotlib.colors as mcolors | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=6, pad=0.5): | |
"""Plot a set of images horizontally. | |
Args: | |
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). | |
titles: a list of strings, as titles for each image. | |
cmaps: colormaps for monochrome images. | |
""" | |
n = len(imgs) | |
if not isinstance(cmaps, (list, tuple)): | |
cmaps = [cmaps] * n | |
figsize = (size * n, size * 3 / 4) if size is not None else None | |
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi) | |
if n == 1: | |
ax = [ax] | |
for i in range(n): | |
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) | |
ax[i].get_yaxis().set_ticks([]) | |
ax[i].get_xaxis().set_ticks([]) | |
ax[i].set_axis_off() | |
for spine in ax[i].spines.values(): # remove frame | |
spine.set_visible(False) | |
if titles: | |
ax[i].set_title(titles[i]) | |
fig.tight_layout(pad=pad) | |
return fig | |
def plot_lines( | |
lines, fig, line_colors="orange", point_colors="cyan", ps=4, lw=2, indices=(0, 1) | |
): | |
"""Plot lines and endpoints for existing images. | |
Args: | |
lines: list of ndarrays of size (N, 2, 2). | |
colors: string, or list of list of tuples (one for each keypoints). | |
ps: size of the keypoints as float pixels. | |
lw: line width as float pixels. | |
indices: indices of the images to draw the matches on. | |
""" | |
if not isinstance(line_colors, list): | |
line_colors = [line_colors] * len(lines) | |
if not isinstance(point_colors, list): | |
point_colors = [point_colors] * len(lines) | |
# fig = plt.gcf() | |
ax = fig.axes | |
assert len(ax) > max(indices) | |
axes = [ax[i] for i in indices] | |
fig.canvas.draw() | |
# Plot the lines and junctions | |
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors): | |
for i in range(len(l)): | |
line = matplotlib.lines.Line2D( | |
(l[i, 1, 1], l[i, 0, 1]), | |
(l[i, 1, 0], l[i, 0, 0]), | |
zorder=1, | |
c=lc, | |
linewidth=lw, | |
) | |
a.add_line(line) | |
pts = l.reshape(-1, 2) | |
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2) | |
return fig | |
def plot_color_line_matches(lines, fig, lw=2, indices=(0, 1)): | |
"""Plot line matches for existing images with multiple colors. | |
Args: | |
lines: list of ndarrays of size (N, 2, 2). | |
lw: line width as float pixels. | |
indices: indices of the images to draw the matches on. | |
""" | |
n_lines = len(lines[0]) | |
cmap = plt.get_cmap("nipy_spectral", lut=n_lines) | |
colors = np.array([mcolors.rgb2hex(cmap(i)) for i in range(cmap.N)]) | |
np.random.shuffle(colors) | |
ax = fig.axes | |
assert len(ax) > max(indices) | |
axes = [ax[i] for i in indices] | |
fig.canvas.draw() | |
# Plot the lines | |
for a, l in zip(axes, lines): | |
for i in range(len(l)): | |
line = matplotlib.lines.Line2D( | |
(l[i, 1, 1], l[i, 0, 1]), | |
(l[i, 1, 0], l[i, 0, 0]), | |
zorder=1, | |
c=colors[i], | |
linewidth=lw, | |
) | |
a.add_line(line) | |
return fig | |