Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from math import floor | |
from typing import Optional | |
import spaces | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
# config | |
model_name = "kotoba-tech/kotoba-whisper-v2.2" | |
example_file = "sample_diarization_japanese.mp3" | |
# device setting | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
device = "cuda" | |
model_kwargs = {'attn_implementation': 'sdpa'} | |
else: | |
torch_dtype = torch.float32 | |
device = "cpu" | |
model_kwargs = {} | |
# define the pipeline | |
pipe = pipeline( | |
model=model_name, | |
chunk_length_s=15, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
model_kwargs=model_kwargs, | |
trust_remote_code=True | |
) | |
sampling_rate = pipe.feature_extractor.sampling_rate | |
def format_time(start: Optional[float], end: Optional[float]): | |
def _format_time(seconds: Optional[float]): | |
if seconds is None: | |
return "[no timestamp available]" | |
minutes = floor(seconds / 60) | |
hours = floor(seconds / 3600) | |
seconds = seconds - hours * 3600 - minutes * 60 | |
m_seconds = floor(round(seconds - floor(seconds), 1) * 10) | |
seconds = floor(seconds) | |
return f'{minutes:02}:{seconds:02}.{m_seconds:01}' | |
return f"[{_format_time(start)} -> {_format_time(end)}]:" | |
def get_prediction(inputs): | |
return pipe(inputs, generate_kwargs={"language": "ja", "task": "transcribe"}) | |
def transcribe(inputs: str): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
prediction = get_prediction({"array": ffmpeg_read(inputs, sampling_rate), "sampling_rate": sampling_rate}) | |
output = "" | |
for n, s in enumerate(prediction["speakers"]): | |
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]]) | |
output += f'### Speaker {n+1} \n{text_timestamped}\n' | |
return output | |
description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses " | |
f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).") | |
title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}" | |
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]} | |
o_upload = gr.Markdown() | |
o_mic = gr.Markdown() | |
i_upload = gr.Interface( | |
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file")], outputs=gr.Markdown(), **shared_config | |
) | |
i_mic = gr.Interface( | |
inputs=[gr.Audio(sources="microphone", type="filepath", label="Microphone input")], outputs=gr.Markdown(), **shared_config | |
) | |
with gr.Blocks() as demo: | |
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"]) | |
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True) | |