Spaces:
Running
Running
import traceback | |
from queue import Queue | |
from threading import Thread | |
import collections.abc | |
import torch | |
from transformers import StoppingCriteria | |
class StoppingCriteriaSub(StoppingCriteria): | |
def __init__(self, stops=[], encounters=[]): | |
super().__init__() | |
assert len(stops) % len(encounters) == 0, "Number of stops and encounters must match" | |
self.encounters = encounters | |
self.stops = [stop.to("cuda") for stop in stops] | |
self.num_stops = [0] * len(stops) | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stopi, stop in enumerate(self.stops): | |
if torch.all((stop == input_ids[0][-len(stop):])).item(): | |
self.num_stops[stopi] += 1 | |
if self.num_stops[stopi] >= self.encounters[stopi % len(self.encounters)]: | |
return True | |
# print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True) | |
# print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True) | |
return False | |