File size: 3,548 Bytes
5416a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39493
 
5416a13
5d39493
 
 
5416a13
 
 
 
5d39493
 
5416a13
 
 
5d39493
5416a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5416a13
 
 
 
 
 
 
 
 
 
 
 
5d39493
5416a13
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch

controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float32, use_safetensors=True)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float32,
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()


def infer(prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed):

    conditioning_image = Image.fromarray(conditioning_image)
    conditioning_image = conditioning_image.convert('L')

    generator = torch.Generator(device="cpu").manual_seed(seed)

    output_image = pipe(
        prompt,
        conditioning_image,
        height=size,
        width=size,
        num_inference_steps=num_inference_steps,
        generator=generator,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=1.0,
    ).images[0]

    return output_image

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ControlNet on Brightness

    This is a demo on ControlNet based on brightness.
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
            )
            conditioning_image = gr.Image(
                label="Conditioning Image",
            )
            with gr.Accordion('Advanced options', open=False):
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        10, 40, 20,
                        step=1,
                        label="Steps",
                    )
                    size = gr.Slider(
                        256, 768, 512,
                        step=128,
                        label="Size",
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label='Guidance Scale',
                        minimum=0.1,
                        maximum=30.0,
                        value=7.0,
                        step=0.1
                    )
                    seed = gr.Slider(
                        label='Seed',
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        randomize=True
                    )
            submit_btn = gr.Button(
                value="Submit",
                variant="primary"
            )
        with gr.Column(min_width=300):
            output = gr.Image(
                label="Result",
            )

    submit_btn.click(
        fn=infer,
        inputs=[
            prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
        ],
        outputs=output
    )
    gr.Examples(
        examples=[
            ["a painting of a village in the mountains", "monochrome", "./conditioning_images/conditioning_image_1.jpg"],
            ["three people walking in an alleyway with hats and pants", "monochrome", "./conditioning_images/conditioning_image_2.jpg"],
        ],
        inputs=[
            prompt, negative_prompt, conditioning_image
        ],
    )

demo.launch()