File size: 14,545 Bytes
57fa8fc
c212435
 
57fa8fc
c212435
57fa8fc
46964bb
a57776c
c9354dd
 
 
57fa8fc
 
 
 
c9354dd
57fa8fc
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
c9354dd
57fa8fc
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
c212435
 
57fa8fc
 
 
 
 
 
 
c9354dd
 
 
 
 
 
57fa8fc
 
c9354dd
57fa8fc
c9354dd
57fa8fc
 
 
 
c212435
 
 
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
 
 
 
c212435
57fa8fc
 
c9354dd
 
 
 
 
 
 
 
 
 
 
57fa8fc
d307831
57fa8fc
c212435
c9354dd
 
 
 
 
 
 
 
 
c212435
d307831
57fa8fc
 
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c212435
57fa8fc
 
 
 
 
 
 
 
 
d307831
 
c212435
57fa8fc
 
c212435
57fa8fc
 
c212435
57fa8fc
 
c212435
 
57fa8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
7b08294
57fa8fc
 
d307831
57fa8fc
 
 
 
 
 
c212435
c9354dd
 
 
57fa8fc
c9354dd
57fa8fc
 
 
c212435
57fa8fc
 
 
 
c212435
 
 
57fa8fc
 
 
c212435
 
696a020
 
c212435
57fa8fc
af2bb4b
c9354dd
 
 
 
 
 
 
 
 
 
57fa8fc
d307831
57fa8fc
 
d307831
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
ca6b4b2
 
c212435
 
57fa8fc
 
 
af2bb4b
 
 
57fa8fc
 
 
 
 
af2bb4b
c9354dd
57fa8fc
d307831
57fa8fc
 
 
af2bb4b
57fa8fc
 
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa8fc
 
 
 
 
c9354dd
57fa8fc
 
 
 
 
c9354dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, TensorDataset
from torch.optim import lr_scheduler
from loguru import logger
import pandas as pd
from scipy.stats import norm
from dataclasses import dataclass, field
from tqdm import tqdm  
from typing import Optional, Tuple, List, Union

from temps.utils import maximum_mean_discrepancy


@dataclass
class TempsModule:
    """Attributes:
    model_f (nn.Module): The feature extraction model.
    model_z (nn.Module): The model for predicting z values.
    batch_size (int): Size of each batch for training. Default is 100.
    rejection_param (int): Parameter for rejection sampling. Default is 1.
    da (bool): Flag for enabling domain adaptation. Default is True.
    verbose (bool): Flag for verbose logging. Default is False.
    device (torch.device): Device to run the model on (CPU or GPU).
    ngaussians (int): Number of Gaussian components in the mixture model.
    """

    model_f: nn.Module
    model_z: nn.Module
    batch_size: int = 100
    rejection_param: int = 1
    da: bool = True
    verbose: bool = False
    device: torch.device = field(init=False)
    ngaussians: int = field(init=False)

    def __post_init__(self) -> None:
        """Post-initialization for setting up additional attributes."""
        self.device: torch.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu"
        )
        self.ngaussians: int = (
            self.model_z.ngaussians
        )  # Assuming ngaussians is an integer

    def _get_dataloaders(
        self,
        input_data: np.ndarray,
        target_data: np.ndarray,
        input_data_da: Optional[np.ndarray] = None,
        val_fraction: float = 0.1,
    ) -> Tuple[DataLoader, DataLoader]:
        """Create training and validation dataloaders.

        Args:
            input_data (np.ndarray): The input features for training.
            target_data (np.ndarray): The target outputs for training.
            input_data_da (Optional[np.ndarray]): Input data for domain adaptation (if any).
            val_fraction (float): Fraction of data to use for validation. Default is 0.1.

        Returns:
            Tuple[DataLoader, DataLoader]: Training and validation data loaders.
        """

        input_data = torch.Tensor(input_data)
        target_data = torch.Tensor(target_data)
        input_data_da = (
            torch.Tensor(input_data_da)
            if input_data_da is not None
            else input_data.clone()
        )

        dataset = TensorDataset(input_data, input_data_da, target_data)

        # Calculate sizes for training and validation sets
        total_size = len(dataset)
        val_size = int(total_size * val_fraction)
        train_size = total_size - val_size

        train_dataset, val_dataset = torch.utils.data.random_split(
            dataset,
            [train_size, val_size],
        )

        loader_train = DataLoader(
            train_dataset, batch_size=self.batch_size, shuffle=True
        )
        loader_val = DataLoader(val_dataset, batch_size=64, shuffle=True)

        return loader_train, loader_val

    def _loss_function(
        self,
        mean: torch.Tensor,
        std: torch.Tensor,
        logmix: torch.Tensor,
        true: torch.Tensor,
    ) -> torch.Tensor:
        """Compute the loss function for the model.

        Args:
            mean (torch.Tensor): Mean values predicted by the model.
            std (torch.Tensor): Standard deviation values predicted by the model.
            logmix (torch.Tensor): Logarithm of the mixture coefficients.
            true (torch.Tensor): True target values.

        Returns:
            torch.Tensor: The computed loss value.
        """
        log_prob = (
            logmix - 0.5 * (mean - true[:, None]).pow(2) / std.pow(2) - torch.log(std)
        )
        log_prob = torch.logsumexp(log_prob, dim=1)
        loss = -log_prob.mean()
        return loss

    def _loss_function_da(self, f1: torch.Tensor, f2: torch.Tensor) -> torch.Tensor:
        """Compute the KL divergence loss for domain adaptation.

        Args:
            f1 (torch.Tensor): Features from the primary domain.
            f2 (torch.Tensor): Features from the domain for adaptation.

        Returns:
            torch.Tensor: The KL divergence loss value.
        """

        kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True)
        loss = kl_loss(f1, f2)
        return torch.log(loss)

    def _to_numpy(self, x: torch.Tensor) -> np.ndarray:
        """Convert a tensor to a NumPy array.

        Args:
            x (torch.Tensor): The input tensor to convert.

        Returns:
            np.ndarray: The converted NumPy array.
        """
        return x.detach().cpu().numpy()

    def train(
        self,
        input_data: np.ndarray,
        input_data_da: np.ndarray,
        target_data: np.ndarray,
        nepochs: int = 10,
        step_size: int = 100,
        val_fraction: float = 0.1,
        lr: float = 1e-3,
        weight_decay: float = 0,
    ) -> None:
        """Train the models using provided data.

        Args:
            input_data (np.ndarray): The input features for training.
            input_data_da (np.ndarray): Input data for domain adaptation.
            target_data (np.ndarray): The target outputs for training.
            nepochs (int): Number of training epochs. Default is 10.
            step_size (int): Step size for learning rate scheduling. Default is 100.
            val_fraction (float): Fraction of data to use for validation. Default is 0.1.
            lr (float): Learning rate for the optimizer. Default is 1e-3.
            weight_decay (float): Weight decay for regularization. Default is 0.
        """
        self.model_z.train()
        self.model_f.train()

        loader_train, loader_val = self._get_dataloaders(
            input_data, target_data, input_data_da, val_fraction
        )
        optimizer_z = optim.Adam(
            self.model_z.parameters(), lr=lr, weight_decay=weight_decay
        )
        optimizer_f = optim.Adam(
            self.model_f.parameters(), lr=lr, weight_decay=weight_decay
        )

        scheduler_z = lr_scheduler.StepLR(optimizer_z, step_size=step_size, gamma=0.1)
        scheduler_f = lr_scheduler.StepLR(optimizer_f, step_size=step_size, gamma=0.1)

        self.model_z.to(self.device)
        self.model_f.to(self.device)

        loss_train, loss_validation = [], []

        for epoch in range(nepochs):
            _loss_train, _loss_validation = [], []
            logger.info(f"Epoch {epoch + 1}/{nepochs} starting...")
            for input_data, input_data_da, target_data in tqdm(
                loader_train, desc="Training", unit="batch"
            ):
                input_data, target_data = input_data.to(self.device), target_data.to(
                    self.device
                )
                if self.da:
                    input_data_da = input_data_da.to(self.device)

                optimizer_f.zero_grad()
                optimizer_z.zero_grad()

                features = self.model_f(input_data)
                features_da = self.model_f(input_data_da) if self.da else None

                mu, logsig, logmix_coeff = self.model_z(features)
                logsig = torch.clamp(logsig, -6, 2)
                sig = torch.exp(logsig)

                loss_z = self._loss_function(mu, sig, logmix_coeff, target_data)
                loss = loss_z + (
                    1e3
                    * maximum_mean_discrepancy(
                        features, features_da, kernel_type="rbf"
                    ).sum()
                    if self.da
                    else 0
                )

                _loss_train.append(loss_z.item())
                loss.backward()
                optimizer_f.step()
                optimizer_z.step()

            scheduler_f.step()
            scheduler_z.step()

            loss_train.append(np.mean(_loss_train))
            _loss_validation = self._validate(loader_val, target_data)

            logger.info(
                f"Epoch {epoch + 1}: Training Loss: {np.mean(_loss_train):.4f}, Validation Loss: {np.mean(_loss_validation):.4f}"
            )

    def _validate(
        self, loader_val: DataLoader, target_data: torch.Tensor
    ) -> List[float]:
        """Validate the model on the validation dataset."""

        self.model_z.eval()
        self.model_f.eval()
        _loss_validation = []

        with torch.no_grad():
            for input_data, _, target_data in tqdm(
                loader_val, desc="Validating", unit="batch"
            ):
                input_data = input_data.to(self.device)
                target_data = target_data.to(self.device)

                features = self.model_f(input_data)
                mu, logsig, logmix_coeff = self.model_z(features)
                logsig = torch.clamp(logsig, -6, 2)
                sig = torch.exp(logsig)

                loss_val = self._loss_function(mu, sig, logmix_coeff, target_data)
                _loss_validation.append(loss_val.item())

        return _loss_validation

    def get_features(self, input_data: torch.Tensor) -> np.ndarray:
        """Extract features from the model for the given input data.

        Args:
            input_data (torch.Tensor): Input tensor containing the data for which features are to be extracted.

        Returns:
            np.ndarray: Numpy array of extracted features from the model.
        """

        self.model_f.eval()
        input_data = input_data.to(self.device)
        features = self.model_f(input_data)
        return self._to_numpy(features)

    def get_pz(
        self,
        input_data: torch.Tensor,
        return_pz: bool = True,
        return_flag: bool = True,
        return_odds: bool = False,
        ) -> Union[
                Tuple[np.ndarray, np.ndarray],                # Return z and zerr
                Tuple[np.ndarray, np.ndarray],                # Return z, pz
                Tuple[np.ndarray, np.ndarray, np.ndarray]     # Return z, pz, odds
            ]:
        """Get the predicted redshift (z) values and their uncertainties from the model.

        This function predicts the photo-z for the input galaxies, computes the mean and standard
        deviation for the predicted redshifts, and optionally calculates the probability density function (PDF).

        Args:
            input_data (torch.Tensor): Input tensor containing galaxy data for which to predict redshifts.
            return_pz (bool, optional): Flag indicating whether to return the probability density function. Defaults to True.
            return_flag (bool, optional): Flag indicating whether to return additional information. Defaults to True.
            return_odds (bool, optional): Flag indicating whether to return the odds. Defaults to False.

        Returns:
            Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
                - If return_pz is True, returns the PDF and possibly additional metrics.
                - If return_pz is False, returns a tuple containing the predicted redshifts and their uncertainties.
        """

        logger.info("Predicting photo-z for the input galaxies...")
        self.model_z.eval().to(self.device)
        self.model_f.eval().to(self.device)

        input_data = input_data.to(self.device)
        features = self.model_f(input_data)
        mu, logsig, logmix_coeff = self.model_z(features)
        logsig = torch.clamp(logsig, -6, 2)
        sig = torch.exp(logsig)

        mix_coeff = torch.exp(logmix_coeff)
        z = (mix_coeff * mu).sum(dim=1)
        zerr = torch.sqrt(
            (mix_coeff * sig**2).sum(dim=1)
            + (mix_coeff * (mu - mu.mean(dim=1, keepdim=True)) ** 2).sum(dim=1)
        )

        z = self._to_numpy(z)
        mu, mix_coeff, sig = map(self._to_numpy, (mu, mix_coeff, sig))

        if return_pz:
            logger.info("Returning p(z)")
            return self._calculate_pdf(z, mu, sig, mix_coeff, return_flag)
        else:
            return self._to_numpy(z), self._to_numpy(zerr)

    def _calculate_pdf(
        self,
        z: np.ndarray,
        mu: np.ndarray,
        sig: np.ndarray,
        mix_coeff: np.ndarray,
        return_flag: bool,
    ) -> Union[
        Tuple[np.ndarray, np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]
    ]:
        """Calculate the probability density function (PDF) for the predicted redshifts.

        Args:
            z (np.ndarray): Predicted redshift values.
            mu (np.ndarray): Mean values for the Gaussian components.
            sig (np.ndarray): Standard deviations for the Gaussian components.
            mix_coeff (np.ndarray): Mixture coefficients for the Gaussian components.
            return_flag (bool): Flag indicating whether to calculate and return odds.

        Returns:
            Union[Tuple[np.ndarray, np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]:
                - If return_flag is True, returns a tuple containing the redshift values, PDF, and the z-grid.
                - If return_flag is False, returns a tuple containing the redshift values and PDF.
        """

        zgrid = np.linspace(0, 5, 1000)
        pz = np.zeros((len(z), len(zgrid)))

        for ii in range(len(z)):
            for i in range(self.ngaussians):
                pz[ii] += mix_coeff[ii, i] * norm.pdf(zgrid, mu[ii, i], sig[ii, i])

        if return_flag:
            logger.info("Calculating and returning ODDS")
            pz /= pz.sum(axis=1, keepdims=True)
            return self._calculate_odds(z, pz, zgrid)
        return z, pz

    def _calculate_odds(
        self, z: np.ndarray, pz: np.ndarray, zgrid: np.ndarray
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Calculate the odds for the estimated redshifts based on the cumulative distribution.

        Args:
            z (np.ndarray): Predicted redshift values.
            pz (np.ndarray): Probability density function values.
            zgrid (np.ndarray): Grid of redshift values for evaluation.

        Returns:
            Tuple[np.ndarray, np.ndarray, np.ndarray]: A tuple containing the predicted redshift values,
            PDF values, and calculated odds.
        """

        cumulative = np.cumsum(pz, axis=1)
        odds = np.array(
            [np.max(np.abs(cumulative[i] - 0.68)) for i in range(cumulative.shape[0])]
        )
        return z, pz, odds