File size: 7,414 Bytes
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a020
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a020
 
 
c212435
 
 
 
 
 
696a020
c212435
 
 
 
 
 
 
696a020
 
 
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a020
 
 
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a020
c212435
 
 
696a020
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a020
c212435
 
 
696a020
c212435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import pandas as pd
from astropy.io import fits
import os
from astropy.table import Table
from scipy.spatial import KDTree

import matplotlib.pyplot as plt

from matplotlib import rcParams
rcParams["mathtext.fontset"] = "stix"
rcParams["font.family"] = "STIXGeneral"


class archive():
    def __init__(self, path, aperture=2, drop_stars=True, clean_photometry=True, convert_colors=True, extinction_corr=True, only_zspec=True, Qz_cut=1):
        
        self.aperture = aperture
        
        self.weight_dict={(-99,0.99):0,
             (1,1.99):0.5,
             (2,2.99):0.75,
             (3,4):1,
             (9,9.99):0.25,
             (10,10.99):0,
             (11,11.99):0.5,
             (12,12.99):0.75,
             (13,14):1,
             (14.01,40):0
            }
        
        filename_calib='euclid_cosmos_DC2_S1_v2.1_calib_clean.fits'
        filename_valid='euclid_cosmos_DC2_S1_v2.1_valid_matched.fits'
        filename_gold='Export_Gold_2023_07_03.csv'
        
        hdu_list = fits.open(os.path.join(path,filename_calib))
        cat = Table(hdu_list[1].data).to_pandas()
        
        hdu_list = fits.open(os.path.join(path,filename_valid))
        cat_test = Table(hdu_list[1].data).to_pandas()
        
        self._get_loss_weights(cat)
        self._get_loss_weights(cat_test)
        
        gold_sample = pd.read_csv(os.path.join(path,filename_gold))
        
        #cat_test = self._match_gold_sample(cat_test,gold_sample)        
        
        if drop_stars==True:
            cat = cat[cat.mu_class_L07==1]
            cat_test = cat_test[cat_test.mu_class_L07==1]

        if clean_photometry==True:
            cat = self._clean_photometry(cat)
            cat_test = self._clean_photometry(cat_test)
            
        
        cat = cat[cat.w_Q_f_S15>0]
                    
        self._set_training_data(cat, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors,Qz_cut=Qz_cut)
        self._set_testing_data(cat_test, only_zspec=only_zspec, extinction_corr=extinction_corr, convert_colors=convert_colors)
        
        self._get_loss_weights(cat)
            
    def _extract_fluxes(self,catalogue):
        columns_f = [f'FLUX_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]
        columns_ferr = [f'FLUXERR_{x}_{self.aperture}' for x in ['G','R','I','Z','Y','J','H']]

        f = catalogue[columns_f].values
        ferr = catalogue[columns_ferr].values
        return f, ferr
    
    def _to_colors(self, flux, fluxerr):
        """ Convert fluxes to colors"""
        color = flux[:,:-1] / flux[:,1:]
        color_err = fluxerr[:,:-1]**2 / flux[:,1:]**2 + flux[:,:-1]**2 / flux[:,1:]**4 * fluxerr[:,:-1]**2
        return color,color_err
    
    def _clean_photometry(self,catalogue):
        """ Drops all object with FLAG_PHOT!=0"""
        catalogue = catalogue[catalogue['FLAG_PHOT']==0]
        
        return catalogue
    
    def _correct_extinction(self,catalogue, f):
        """Corrects for extinction"""
        ext_correction_cols =  [f'EB_V_corr_FLUX_{x}' for x in ['G','R','I','Z','Y','J','H']]
        ext_correction = catalogue[ext_correction_cols].values
        
        f = f * ext_correction
        return f
    
    def _take_only_zspec(self,catalogue,cat_flag=None):
        """Selects only galaxies with spectroscopic redshift"""
        if cat_flag=='Calib':
            catalogue = catalogue[catalogue.z_spec_S15>0]
        elif cat_flag=='Valid':
            catalogue = catalogue[catalogue.z_spec_S15>0]
        return catalogue

    def _clean_zspec_sample(self,catalogue ,Qz_cut):
        catalogue = catalogue[catalogue.w_Q_f_S15>=Qz_cut]
        return catalogue
        
    def _map_weight(self,Qz):
        for key, value in self.weight_dict.items():
            if key[0] <= Qz <= key[1]:
                return value
    
    def _get_loss_weights(self,catalogue):
        catalogue['w_Q_f_S15'] = catalogue['Q_f_S15'].apply(self._map_weight)

    def _match_gold_sample(self,catalogue_valid, catalogue_gold, max_distance_arcsec=2):
        max_distance_deg = max_distance_arcsec / 3600.0 

        gold_sample_radec = np.c_[catalogue_gold.RIGHT_ASCENSION,catalogue_gold.DECLINATION]
        valid_sample_radec = np.c_[catalogue_valid['RA'],catalogue_valid['DEC']]

        kdtree = KDTree(gold_sample_radec)
        distances, indices = kdtree.query(valid_sample_radec, k=1)

        specz_match_gold = catalogue_gold.FINAL_SPEC_Z.values[indices]

        zs = [specz_match_gold[i] if distance < max_distance_deg else -99 for i, distance in enumerate(distances)]

        catalogue_valid['z_spec_gold'] = zs

        return catalogue_valid

    
    def _set_training_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True,Qz_cut=1):
        
        if only_zspec:
            catalogue = self._take_only_zspec(catalogue, cat_flag='Calib')
            catalogue = self._clean_zspec_sample(catalogue, Qz_cut=Qz_cut)
            
        self.cat_train=catalogue
        f, ferr = self._extract_fluxes(catalogue)
        
        
        if extinction_corr==True:
            f = self._correct_extinction(catalogue,f)
                    
        if convert_colors==True:
            col, colerr = self._to_colors(f, ferr)
                        
            self.phot_train = col
            self.photerr_train = colerr
        else:
            self.phot_train = f
            self.photerr_train = ferr  
            
        self.target_z_train = catalogue['z_spec_S15'].values
        self.target_qz_train = catalogue['w_Q_f_S15'].values
        
    def _set_testing_data(self,catalogue, only_zspec=True, extinction_corr=True, convert_colors=True):
 
        if only_zspec:
            catalogue = self._take_only_zspec(catalogue, cat_flag='Valid')
            catalogue = self._clean_zspec_sample(catalogue, Qz_cut=1)
            
        self.cat_test=catalogue
            
        f, ferr = self._extract_fluxes(catalogue)
                
        
        if extinction_corr==True:
            f = self._correct_extinction(catalogue,f)
            
        if convert_colors==True:
            col, colerr = self._to_colors(f, ferr)
            self.phot_test = col
            self.photerr_test = colerr
        else:
            self.phot_test = f
            self.photerr_test = ferr  
            
        self.target_z_test = catalogue['z_spec_S15'].values
            
        
    def get_training_data(self):
        return self.phot_train, self.photerr_train, self.target_z_train, self.target_qz_train

    def get_testing_data(self):
        return self.phot_test, self.photerr_test, self.target_z_test

    def get_VIS_mag(self, catalogue):
        return catalogue[['MAG_VIS']].values
    
    def plot_zdistribution(self, plot_test=False, bins=50):
        _,_,specz = photoz_archive.get_training_data()
        plt.hist(specz, bins = bins, hisstype='step', color='navy', label=r'Training sample')

        if plot_test:
            _,_,specz_test = photoz_archive.get_training_data()
            plt.hist(specz, bins = bins, hisstype='step', color='goldenrod', label=r'Test sample',ls='--')

            
        plt.xticks(fontsize=12)
        plt.yticks(fontsize=12)

        plt.xlabel(r'Redshift', fontsize=14)
        plt.ylabel('Counts', fontsize=14)
        
        plt.show()