Spaces:
Runtime error
Runtime error
File size: 1,494 Bytes
c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 696a020 c212435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from torch import nn, optim
import torch
class Photoz_network(nn.Module):
def __init__(self, num_gauss=10, dropout_prob=0):
super(Photoz_network, self).__init__()
self.features = nn.Sequential(
nn.Linear(6, 10),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, 50),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(50, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, 10)
)
self.measure_mu = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
self.measure_coeffs = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
self.measure_sigma = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
def forward(self, x):
f = self.features(x)
mu = self.measure_mu(f)
sigma = self.measure_sigma(f)
logmix_coeff = self.measure_coeffs(f)
logmix_coeff = logmix_coeff - torch.logsumexp(logmix_coeff, 1)[:,None]
return mu, sigma, logmix_coeff
|