laverdes commited on
Commit
c66e5fb
·
1 Parent(s): ef746ab

chore: better flow

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -84,11 +84,12 @@ with col1:
84
  df_right.baseline = df_right.baseline.map(lambda ser: [f for f in ser if f != 0.0])
85
  st.session_state['df'] = df_right.copy(deep=True)
86
  st.success("Blinking values have been removed!")
 
87
  elif detect_blinking and not number_of_blinks:
88
  st.caption("No blinking values were found in your data! ")
89
 
90
  # Add calculated fields
91
- if 'df' in list(st.session_state.keys()):
92
  df_right = st.session_state.df.copy(deep=True)
93
  if "baseline" in list(df_right.keys()):
94
  st.markdown(f"A **baseline** feature has been found on your data, do you want to merge it with any of the other features in a new calculated field?")
@@ -98,10 +99,11 @@ if 'df' in list(st.session_state.keys()):
98
  if add_relative:
99
  baseline_mean = [sum(s)/len(s) for s in df_right['baseline']]
100
  df_right[relative_key] = [[field_value - baseline_mean[i] for field_value in df_right[option[0]][i]] for i in range(len(df_right))]
101
- st.markdown("After adding calculated fields")
102
  st.dataframe(df_right)
103
  csv = convert_df(df_right)
104
-
 
105
  # Save transformations to disk
106
  downl = st.download_button("Download CSV 💾", csv, "file.csv", "text/csv", key='download-csv')
107
  if downl:
 
84
  df_right.baseline = df_right.baseline.map(lambda ser: [f for f in ser if f != 0.0])
85
  st.session_state['df'] = df_right.copy(deep=True)
86
  st.success("Blinking values have been removed!")
87
+ st.session_state.df_base = df_right
88
  elif detect_blinking and not number_of_blinks:
89
  st.caption("No blinking values were found in your data! ")
90
 
91
  # Add calculated fields
92
+ if 'df' in st.session_state or 'df_right' in st.session_state:
93
  df_right = st.session_state.df.copy(deep=True)
94
  if "baseline" in list(df_right.keys()):
95
  st.markdown(f"A **baseline** feature has been found on your data, do you want to merge it with any of the other features in a new calculated field?")
 
99
  if add_relative:
100
  baseline_mean = [sum(s)/len(s) for s in df_right['baseline']]
101
  df_right[relative_key] = [[field_value - baseline_mean[i] for field_value in df_right[option[0]][i]] for i in range(len(df_right))]
102
+ st.markdown("After adding calculated fields and removing blinking values (when applied)")
103
  st.dataframe(df_right)
104
  csv = convert_df(df_right)
105
+ if 'df_right' not in st.session_state:
106
+ st.session_state['df_right'] = df_right
107
  # Save transformations to disk
108
  downl = st.download_button("Download CSV 💾", csv, "file.csv", "text/csv", key='download-csv')
109
  if downl: