Spaces:
Runtime error
Runtime error
File size: 3,236 Bytes
2b0a298 92a96a7 2b0a298 5ac4db8 2b0a298 d06abb7 2b0a298 e977a64 2b0a298 5ac4db8 2b0a298 1d13553 de0c29d 06a82b5 fdb11b8 874e789 449a709 06a82b5 449a709 fdb11b8 7823c55 d06abb7 fdb11b8 4aabad0 7823c55 2b0a298 85d6284 fdb11b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
from langchain import PromptTemplate
def load_doc(pdf_doc, open_ai_key):
if openai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
#Load the pdf file
loader = OnlinePDFLoader(pdf_doc.name)
pages = loader.load_and_split()
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
embeddings = OpenAIEmbeddings()
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
vectordb = Chroma.from_documents(pages, embedding=embeddings)
#Finally, we create the bot using the RetrievalQAChain class
global pdf_qa
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return the question followed by N/A. If you encounter a date, return it in mm/dd/yyyy format.
{context}
Question: {question}
Return the key fields from the question followed by the answer :"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": PROMPT}
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(), chain_type_kwargs=chain_type_kwargs, return_source_documents=True)
return "Ready"
else:
return "Please provide an OpenAI API key"
def answer_query(query):
question = query
return pdf_qa.run(question)
html = """
<div style="text-align:center; max width: 700px;">
<h1>ChatPDF</h1>
<p> Upload a PDF File, then click on Load PDF File <br>
Once the document has been loaded you can begin chatting with the PDF =)
</div>"""
css = """container{max-width:700px; margin-left:auto; margin-right:auto,padding:20px}"""
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
gr.HTML(html)
with gr.Column():
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
with gr.Row():
status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load PDF to LangChain")
with gr.Row():
input = gr.Textbox(label="Type in your question")
output = gr.Textbox(label="Answer")
submit_query = gr.Button("Submit")
load_pdf.click(load_doc, inputs=[pdf_doc, openai_key], outputs=status)
submit_query.click(answer_query,input,output)
#forcing a save in order to re-build the container.
demo.launch()
|