File size: 5,792 Bytes
2b0a298
 
 
7aaadbf
2b0a298
 
 
 
 
92a96a7
2b0a298
5ac4db8
 
65e2d88
2b0a298
 
 
 
 
 
 
 
 
 
 
 
e977a64
2b0a298
5ac4db8
 
 
 
 
 
5f4364a
5ac4db8
 
6755c1e
65e2d88
2b0a298
 
 
65e2d88
2b0a298
fe57073
a4ce5ba
fe57073
 
 
 
551a0c0
 
 
 
 
 
 
 
fe57073
 
 
551a0c0
 
 
 
 
 
 
 
 
 
a4ce5ba
c76b601
 
 
551a0c0
 
 
 
fe57073
 
a4ce5ba
7800652
551a0c0
 
 
fe57073
 
65e2d88
1d13553
 
551a0c0
 
06a82b5
44ffff3
 
 
 
 
 
 
868f6c9
44ffff3
618da7e
44ffff3
 
 
06a82b5
9121213
 
 
06a82b5
fdb11b8
874e789
449a709
 
 
37b4a4e
868f6c9
fe57073
 
551a0c0
6755c1e
fe57073
06a82b5
449a709
551a0c0
c575982
fdb11b8
7823c55
65e2d88
fe57073
 
fdb11b8
4aabad0
7823c55
2b0a298
fdb11b8
65e2d88
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import os
import time
import pandas as pd


from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
from langchain import PromptTemplate

def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key):
    if openai_key is not None:
        os.environ['OPENAI_API_KEY'] = open_ai_key
        #Load the pdf file
        loader = OnlinePDFLoader(pdf_doc.name)
        pages = loader.load_and_split()
        
        #Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
        embeddings = OpenAIEmbeddings()

        #To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
        vectordb = Chroma.from_documents(pages, embedding=embeddings)
        
        #Finally, we create the bot using the RetrievalQAChain class
        global pdf_qa

        prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return the question followed by N/A. If you encounter a date, return it in mm/dd/yyyy format.

        {context}

        Question: {question}
        Return the key fields from the question followed by : and the answer :"""
        PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
        chain_type_kwargs = {"prompt": PROMPT}
        pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
                
        return "Ready"
    else:
        return "Please provide an OpenAI API key"
        

def answer_predefined_questions(document_type):
    
    if document_type == "Deed of Trust":
        #Create a list of questions around the relevant fields of a Deed of Trust(DOT) document
        query1 = "what is the Loan Number?"
        field1 = "Loan Number"
        query2 = "who is the Borrower?"
        field2 = "Borrower"
        query3 = "who is the Co-Borrower?"
        field3 = "Co-Borrower"
        query4 = "what is the Mortgage Identification number?"
        field4 = "MIN Number"
        query5 = "On what date was the Deed of Trust signed?"
        field5 = "Signed Date"        
        
    elif document_type == "Transmittal Summary":
        #Create a list of questions around the relevant fields of a TRANSMITTAL SUMMARY document
        query1 = "who is the Borrower?"
        field1 = "Borrower"
        query2 = "what is the Property Address?"
        field2 = "Property Address"
        query3 = "what is the loan term?"
        field3 = "Loan Term"
        query4 = "What is the base income?"
        field4 = "Base Income"
        query5 = "what is the borrower's SSN?"
        field5 = "Borrower SSN"

    else:
        return "Please choose your Document Type"

    queryList = [query1, query2, query3, query4, query5]
    fieldList = [field1, field2, field3, field4, field5]
    responseList =[]

    i = 0
    while i < len(queryList):
        question = queryList[i]
        responseList.append(pdf_qa.run(question))
        i = i+1

    return pd.DataFrame({"Field": [fieldList[0], fieldList[1], fieldList[2], fieldList[3], fieldList[4]], "Question to gpt-4": [queryList[0], queryList[1], queryList[2], queryList[3], queryList[4]], "Response from gpt-4": [responseList[0],responseList[1],responseList[2],responseList[3],responseList[4]]})
        

    
def answer_query(query):
    question = query
    return pdf_qa.run(question)
    

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chatbot for PDFs - GPT-4</h1>
    <p style="text-align: center;">Upload a .PDF, click the "Load PDF" button, <br />
    Wait for the Status to show Ready, start typing your questions. <br />
    The app is built on GPT-4 and leverages PromptTemplate</p>
</div>
"""

with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
    
    with gr.Column():
        openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
        pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
        
        with gr.Row():
            status = gr.Textbox(label="Status", placeholder="", interactive=False)
            load_pdf = gr.Button("Upload PDF and generate embeddings").style(full_width=False)
            
        with gr.Row():
            document_type = gr.Radio(['Deed of Trust', 'Transmittal Summary'], label="Select the Document Type")
            answers = gr.Dataframe(label="Answers to Predefined Question set")
            answers_for_predefined_question_set = gr.Button("Get gpt-4 answers to pre-defined question set").style(full_width=False)
              
        with gr.Row():
            input = gr.Textbox(label="Type in your question")
            output = gr.Textbox(label="Answer")
            submit_query = gr.Button("Submit your own question to gpt-4").style(full_width=False)
        
 
    load_pdf.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, openai_key], outputs=status)

    answers_for_predefined_question_set.click(answer_predefined_questions, document_type, answers)
        
    submit_query.click(answer_query,input,output)


demo.launch()