Spaces:
Runtime error
Runtime error
File size: 7,062 Bytes
2b0a298 92a96a7 2b0a298 5ac4db8 65e2d88 2b0a298 e977a64 2b0a298 5ac4db8 5f4364a 5ac4db8 a03a974 65e2d88 2b0a298 65e2d88 2b0a298 fe57073 a4ce5ba fe57073 a4ce5ba fe57073 a4ce5ba fe57073 a4ce5ba fe57073 3c3def3 fe57073 65e2d88 1d13553 5f4364a 65e2d88 06a82b5 44ffff3 868f6c9 44ffff3 618da7e 44ffff3 06a82b5 9121213 06a82b5 fdb11b8 874e789 449a709 868f6c9 fe57073 06a82b5 449a709 fe57073 fdb11b8 7823c55 65e2d88 fe57073 fdb11b8 4aabad0 7823c55 2b0a298 fdb11b8 65e2d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
from langchain import PromptTemplate
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key):
if openai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
#Load the pdf file
loader = OnlinePDFLoader(pdf_doc.name)
pages = loader.load_and_split()
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
embeddings = OpenAIEmbeddings()
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
vectordb = Chroma.from_documents(pages, embedding=embeddings)
#Finally, we create the bot using the RetrievalQAChain class
global pdf_qa
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return the question followed by N/A. If you encounter a date, return it in mm/dd/yyyy format.
{context}
Question: {question}
Return the key fields from the question followed by : and the answer :"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": PROMPT}
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
return "Ready"
else:
return "Please provide an OpenAI API key"
def answer_predefined_questions(document_type):
if document_type == "Deed of Trust":
#Create a list of questions around the relevant fields of a Deed of Trust(DOT) document
query0 = "what is the Lender's Name?"
field0 = "Lender"
query1 = "what is the Loan Number?"
field1 = "Loan Number"
query2 = "what is the Case Number?"
field2 = "Case Number"
query3 = "what is the VA/FHA Number?"
field3 = "VA/FHA Number"
query4 = "who is the Borrower?"
field4 = "Borrower"
query5 = "who is the Co-Borrower?"
field5 = "Co-Borrower"
query6 = "what is the Mortgage Identification number?"
field6 = "MIN Number"
query7 = "what is the property type - single fmaily, multi family?"
field7 = "Property Type"
query8 = "what is the Property Address?"
field8 = "Property Address"
query9 = "On what date was the Deed of Trust signed?"
field9 = "Signed Date"
query10 = "What is the Property County?"
field10 = "Property County"
query11 = "what is the Electronically recorded date"
field11 = "Electronic Recording Date"
queryList = [query0, query1, query2, query3, query4, query5, query6, query7, query8, query9, query10, query11]
fieldList= [field0, field1, field2, field3, field4, field5, field6, field7, field8, field9, field10, field11]
elif document_type == "Transmittal Summary":
#Create a list of questions around the relevant fields of a TRANSMITTAL SUMMARY document
queryA0 = "who is the Borrower?"
fieldA0 = "Borrower"
queryA1 = "what is the Property Address?"
fieldA1 = "Property Address"
queryA2 = "who is the Co-Borrower?"
fieldA2 = "Co-Borrower"
queryA3 = "what is the loan term?"
fieldA3 = "Loan Term"
queryA4 = "What is the base income?"
fieldA4 = "Base Income"
queryA5 = "what is the original loan amount?"
fieldA5 = "Original Loan Amount"
queryA6 = "what is the Initial P&I Payment?"
fieldA6 = "Initial P&I Payment"
queryA7 = "what is the borrower's SSN?"
fieldA7 = "Borrower SSN"
queryA8 = "what is the co-borrower's SSN?"
fieldA8 = "C0-Borrower SSN"
queryA9 = "Number of units?"
fieldA9 = "Number of units"
queryA10 = "who is the seller?"
fieldA10 = "Seller"
queryA11 = "Document signed date?"
fieldA11 = "Singed Date"
queryList = [queryA0, queryA1, queryA2, queryA3, queryA4, queryA5, queryA6, queryA7, queryA8, queryA9, queryA10, queryA11]
fieldList = [fieldA0, fieldA1, fieldA2, fieldA3, fieldA4, fieldA5, fieldA6, fieldA7, fieldA8, fieldA9, fieldA10, fieldA11]
i = 0
while i < len(queryList):
question = queryList[i]
field = fieldList[i]
response += "Field Name:", field, "; Question sent to gpt-4: ", question, "; Response from gpt-4:",pdf_qa.run(question)
return response
def answer_query(query):
question = query
response = "Field Name: Location; Question sent to gpt-4: ", question, "Response from gpt-4:",pdf_qa.run(question)
return response
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chatbot for PDFs - GPT-4</h1>
<p style="text-align: center;">Upload a .PDF, click the "Load PDF" button, <br />
Wait for the Status to show Ready, start typing your questions. <br />
The app is built on GPT-4 and leverages PromptTemplate</p>
</div>
"""
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
with gr.Row():
status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load PDF")
with gr.Row():
document_type = gr.Radio(['Deed of Trust', 'Transmittal Summary'], label="Select the Document Type")
answers = gr.Textbox(label="Answers to Predefined Question set")
answers_for_predefined_question_set = gr.Button("Get Answers to Pre-defined Question set")
with gr.Row():
input = gr.Textbox(label="Type in your question")
output = gr.Textbox(label="Answer")
submit_query = gr.Button("Submit your question")
load_pdf.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, openai_key], outputs=status)
answers_for_predefined_question_set.click(answer_predefined_questions, document_type, answers)
submit_query.click(answer_query,input,output)
demo.launch()
|