Spaces:
Runtime error
Runtime error
File size: 5,878 Bytes
2b0a298 7aaadbf 2b0a298 92a96a7 2b0a298 5ac4db8 65e2d88 2b0a298 e977a64 2b0a298 5ac4db8 5f4364a 5ac4db8 66df6a8 65e2d88 2b0a298 66df6a8 65e2d88 2b0a298 fe57073 a4ce5ba fe57073 551a0c0 b68b73b 551a0c0 b68b73b 551a0c0 fe57073 551a0c0 66df6a8 551a0c0 66df6a8 551a0c0 66df6a8 551a0c0 a4ce5ba c76b601 551a0c0 fe57073 a4ce5ba 7800652 551a0c0 fe57073 65e2d88 1d13553 551a0c0 06a82b5 44ffff3 66df6a8 618da7e 44ffff3 06a82b5 9121213 06a82b5 fdb11b8 874e789 449a709 37b4a4e 868f6c9 fe57073 551a0c0 6755c1e fe57073 06a82b5 449a709 551a0c0 c575982 fdb11b8 7823c55 65e2d88 fe57073 fdb11b8 4aabad0 7823c55 2b0a298 fdb11b8 65e2d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import os
import time
import pandas as pd
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
from langchain import PromptTemplate
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key):
if openai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
#Load the pdf file
loader = OnlinePDFLoader(pdf_doc.name)
pages = loader.load_and_split()
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
embeddings = OpenAIEmbeddings()
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
vectordb = Chroma.from_documents(pages, embedding=embeddings)
#Finally, we create the bot using the RetrievalQAChain class
global pdf_qa
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return the question followed by N/A. If you encounter a date, return it in mm/dd/yyyy format.
{context}
Question: {question}
Return the key fields from the question followed by : and the answer :"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": PROMPT}
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
return "Ready"
else:
return "Please provide an OpenAI gpt-4 API key"
def answer_predefined_questions(document_type):
if document_type == "Deed of Trust":
#Create a list of questions around the relevant fields of a Deed of Trust(DOT) document
query1 = "what is the Loan Number?"
field1 = "Loan Number"
query2 = "who is the Borrower?"
field2 = "Borrower"
query3 = "what is the Case Number?"
field3 = "Case Number"
query4 = "what is the Mortgage Identification number?"
field4 = "MIN Number"
query5 = "DOT signed date?"
field5 = "Signed Date"
elif document_type == "Transmittal Summary":
#Create a list of questions around the relevant fields of a TRANSMITTAL SUMMARY document
query1 = "who is the Borrower?"
field1 = "Borrower"
query2 = "what is the Property Address?"
field2 = "Property Address"
query3 = "what is the Loan Term?"
field3 = "Loan Term"
query4 = "What is the Base Income?"
field4 = "Base Income"
query5 = "what is the Borrower's SSN?"
field5 = "Borrower SSN"
else:
return "Please choose your Document Type"
queryList = [query1, query2, query3, query4, query5]
fieldList = [field1, field2, field3, field4, field5]
responseList =[]
i = 0
while i < len(queryList):
question = queryList[i]
responseList.append(pdf_qa.run(question))
i = i+1
return pd.DataFrame({"Field": [fieldList[0], fieldList[1], fieldList[2], fieldList[3], fieldList[4]], "Question to gpt-4": [queryList[0], queryList[1], queryList[2], queryList[3], queryList[4]], "Response from gpt-4": [responseList[0],responseList[1],responseList[2],responseList[3],responseList[4]]})
def answer_query(query):
question = query
return pdf_qa.run(question)
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chatbot for PDFs - GPT-4</h1>
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
The app is built on GPT-4 and leverages PromptTemplate</p>
</div>
"""
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
with gr.Row():
status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Upload PDF and generate embeddings").style(full_width=False)
with gr.Row():
document_type = gr.Radio(['Deed of Trust', 'Transmittal Summary'], label="Select the Document Type")
answers = gr.Dataframe(label="Answers to Predefined Question set")
answers_for_predefined_question_set = gr.Button("Get gpt-4 answers to pre-defined question set").style(full_width=False)
with gr.Row():
input = gr.Textbox(label="Type in your question")
output = gr.Textbox(label="Answer")
submit_query = gr.Button("Submit your own question to gpt-4").style(full_width=False)
load_pdf.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, openai_key], outputs=status)
answers_for_predefined_question_set.click(answer_predefined_questions, document_type, answers)
submit_query.click(answer_query,input,output)
demo.launch()
|