File size: 2,917 Bytes
2b0a298
 
 
 
 
 
 
 
92a96a7
2b0a298
 
 
fdb11b8
 
 
06a82b5
2b0a298
 
 
 
 
 
 
 
 
 
 
 
e977a64
2b0a298
92a96a7
2b0a298
 
 
 
 
 
1d13553
 
de0c29d
06a82b5
 
 
 
 
 
 
 
 
 
 
fdb11b8
874e789
06a82b5
fdb11b8
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0a298
 
fdb11b8
2b0a298
06a82b5
2b0a298
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import os
import time


from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)


def loading_pdf():
   return "Loading..."

def load_pdf(pdf_doc, open_ai_key):
    if openai_key is not None:
        os.environ['OPENAI_API_KEY'] = open_ai_key
        #Load the pdf file
        loader = OnlinePDFLoader(pdf_doc.name)
        pages = loader.load_and_split()
        
        #Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
        embeddings = OpenAIEmbeddings()

        #To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
        vectordb = Chroma.from_documents(pages, embedding=embeddings)
        
        #Finally, we create the bot using the RetrievalQAChain class
        global pdf_qa
        pdf_qa = RetrievalQA.from_chain_type(ChatOpenAI(temperature=0, model_name="gpt-4"), vectordb.as_retriever(), return_source_documents=False)
        
        return "Ready"
    else:
        return "Please provide an OpenAI API key"


def answer_query(query):
    question = query
    return pdf_qa.run(question)

html = """
<div style="text-align:center; max width: 700px;">
    <h1>ChatPDF</h1>
    <p> Upload a PDF File, then click on Load PDF File <br>
    Once the document has been loaded you can begin chatting with the PDF =)
</div>"""
css = """container{max-width:700px; margin-left:auto; margin-right:auto,padding:20px}"""
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
    gr.HTML(html)
    with gr.Column():
        openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
        pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
        with gr.Row():
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load PDF to LangChain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        submit_btn = gr.Button("Send Message")
    load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
    load_pdf.click(load_pdf, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
        
    question.submit(answer_query, [question], [question]).then(
        bot, chatbot, chatbot
    )
    submit_btn.click(answer_query, [chatbot,question], [chatbot, question]).then(
        bot, chatbot, chatbot)


demo.launch()