Spaces:
Runtime error
Runtime error
File size: 4,594 Bytes
5721477 2bb8e35 5721477 0089a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from typing import Any, Dict, Iterator, List
import requests
from huggingface_hub import add_collection_item, create_collection
from tqdm.auto import tqdm
class DatasetSearchClient:
def __init__(
self,
base_url: str = "https://librarian-bots-dataset-column-search-api.hf.space",
):
self.base_url = base_url
def search(
self, columns: List[str], match_all: bool = False, page_size: int = 100
) -> Iterator[Dict[str, Any]]:
"""
Search datasets using the provided API, automatically handling pagination.
Args:
columns (List[str]): List of column names to search for.
match_all (bool, optional): If True, match all columns. If False, match any column. Defaults to False.
page_size (int, optional): Number of results per page. Defaults to 100.
Yields:
Dict[str, Any]: Each dataset result from all pages.
Raises:
requests.RequestException: If there's an error with the HTTP request.
ValueError: If the API returns an unexpected response format.
"""
page = 1
total_results = None
while total_results is None or (page - 1) * page_size < total_results:
params = {
"columns": columns,
"match_all": str(match_all).lower(),
"page": page,
"page_size": page_size,
}
try:
response = requests.get(f"{self.base_url}/search", params=params)
response.raise_for_status()
data = response.json()
if not {"total", "page", "page_size", "results"}.issubset(data.keys()):
raise ValueError("Unexpected response format from the API")
if total_results is None:
total_results = data["total"]
yield from data["results"]
page += 1
except requests.RequestException as e:
raise requests.RequestException(
f"Error connecting to the API: {str(e)}"
) from e
except ValueError as e:
raise ValueError(f"Error processing API response: {str(e)}") from e
# Create an instance of the client
client = DatasetSearchClient()
def update_collection_for_dataset(
collection_name: str = None,
dataset_columns: List[str] = None,
collection_description: str = None,
collection_namespace: str = None,
):
if not collection_name:
collection = create_collection(
collection_name, exists_ok=True, description=collection_description
)
else:
collection = create_collection(
collection_name,
exists_ok=True,
description=collection_description,
namespace=collection_namespace,
)
results = list(
tqdm(
client.search(dataset_columns, match_all=True),
desc="Searching datasets...",
leave=False,
)
)
for result in tqdm(results, desc="Adding datasets to collection...", leave=False):
try:
add_collection_item(
collection.slug, result["hub_id"], item_type="dataset", exists_ok=True
)
except Exception as e:
print(
f"Error adding dataset {result['hub_id']} to collection {collection_name}: {str(e)}"
)
return f"https://huggingface.co/collections/{collection.slug}"
collections = [
{
"dataset_columns": ["chosen", "rejected", "prompt"],
"collection_description": "Datasets suitable for DPO based on having 'chosen', 'rejected', and 'prompt' columns. Created using librarian-bots/dataset-column-search-api",
"collection_name": "Direct Preference Optimization Datasets",
},
{
"dataset_columns": ["image", "chosen", "rejected"],
"collection_description": "Datasets suitable for Image Preference Optimization based on having 'image','chosen', and 'rejected' columns",
"collection_name": "Image Preference Optimization Datasets",
},
{
"collection_name": "Alpaca Style Datasets",
"dataset_columns": ["instruction", "input", "output"],
"collection_description": "Datasets which follow the Alpaca Style format based on having 'instruction', 'input', and 'output' columns",
},
]
# results = [
# update_collection_for_dataset(**collection, collection_namespace="librarian-bots")
# for collection in collections
# ]
# print(results)
|