File size: 15,393 Bytes
e76f467
523674a
e76f467
41eb2e8
e8606c8
c70a26e
523674a
0f1fc3f
178d374
fcb27fb
41eb2e8
 
a827413
b7eba49
 
e8606c8
 
c11de04
298633b
931f2d6
 
e8606c8
931f2d6
 
 
 
 
 
 
 
 
 
 
4eaf0e2
9a4acf1
b7eba49
bfb7036
0b22058
bfb7036
 
 
 
 
 
 
cb202cc
931f2d6
 
 
 
 
 
 
 
 
 
 
 
69525dd
 
 
 
 
 
 
 
bfb7036
 
89b7584
4c319af
f13315f
4c319af
 
f13315f
bfb7036
 
 
69525dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca754a0
 
 
178d374
ca754a0
084e4a2
d8c88bb
bfb7036
 
0b22058
b7eba49
 
 
 
 
 
cb202cc
85408e4
 
 
 
 
 
 
 
 
 
c92760e
523674a
 
 
 
 
 
c70a26e
523674a
 
 
 
 
 
 
 
95fcad5
 
a92de99
d263de1
 
 
 
 
41c6947
d263de1
523674a
 
 
 
95fcad5
3328375
69525dd
4b035f0
 
 
 
 
 
 
 
 
 
 
 
f209032
4274e8e
69525dd
 
 
 
 
 
 
 
 
dd4a4f0
69525dd
dd4a4f0
69525dd
ea71148
1dcbd47
 
a92de99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b22058
 
 
 
1b50209
 
 
 
9d39e91
 
1b50209
41eb2e8
 
 
 
b7eba49
 
 
41eb2e8
b7eba49
 
e423e8d
41eb2e8
 
 
bcf76f5
 
 
 
 
a322e72
 
bcf76f5
 
 
 
 
 
 
 
05d12ce
bcf76f5
 
 
 
 
05d12ce
bcf76f5
a322e72
bcf76f5
 
 
 
05d12ce
bcf76f5
a322e72
bcf76f5
c70a26e
 
 
 
 
 
 
 
 
 
 
 
bcf76f5
 
 
 
b7eba49
bcf76f5
 
 
 
 
 
b7eba49
 
bcf76f5
 
b7eba49
bcf76f5
 
 
 
 
41eb2e8
1af9d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb2e8
 
 
 
 
546365b
 
41eb2e8
 
0b22058
b7eba49
c70a26e
8409400
 
 
88fcd4f
8409400
 
 
edb885b
8409400
1af9d99
ca754a0
 
 
 
3a2b24e
ca754a0
3a2b24e
 
094b0d8
 
 
 
8409400
 
e423e8d
0b22058
 
b7eba49
 
8409400
1af9d99
 
 
b7eba49
1af9d99
b7eba49
 
 
0b22058
4e6797d
e301d80
 
3328375
e301d80
8409400
 
 
 
 
 
523674a
8409400
3e2b1f9
c70a26e
 
e9c5b8b
85408e4
 
89bbb9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os
import uuid
import gradio as gr
import json
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import InferenceClient
from loadimg import load_img

with open('loras.json', 'r') as f:
    loras = json.load(f)

job = None

# Verificar las URLs de los modelos
custom_model_url = "https://fffiloni-sd-xl-custom-model.hf.space"
tile_upscaler_url = "https://gokaygokay-tileupscalerv2.hf.space"

client_custom_model = None
client_tile_upscaler = None

# try:
#     client_custom_model = Client(custom_model_url)
#     print(f"Loaded custom model from {custom_model_url}")
# except ValueError as e:
#     print(f"Failed to load custom model: {e}")

# try:
#     client_tile_upscaler = Client(tile_upscaler_url)
#     print(f"Loaded custom model from {tile_upscaler_url}")
# except ValueError as e:
#     print(f"Failed to load custom model: {e}")


def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):    
    try:

        global job
        if selected_index is None:
            raise gr.Error("You must select a LoRA before proceeding.")
        
        selected_lora = loras[selected_index]
        custom_model = selected_lora["repo"]
        trigger_word = selected_lora["trigger_word"]

        global client_custom_model

        if client_custom_model is None:
            try:
                client_custom_model = Client(custom_model_url)
                print(f"Loaded custom model from {custom_model_url}")
            except ValueError as e:
                print(f"Failed to load custom model: {e}")
                client_custom_model = None
                raise gr.Error("Failed to load client for " + custom_model_url)


        try:
            result = client_custom_model.submit(
                custom_model=custom_model,
                api_name="/load_model"
            )
        except ValueError as e:
            raise gr.Error(e)

        weight_name = result.result()[2]['value']

        if trigger_word and prompt.startswith(trigger_word):
            prompt = prompt[len(trigger_word+'. '):].lstrip()

        if style_prompt and prompt.endswith(style_prompt):
            prompt = prompt[:-len('. '+style_prompt)].rstrip()
        
        prompt_arr = [trigger_word, prompt, style_prompt]
        prompt = '. '.join([element.strip() for element in prompt_arr if element.strip() != ''])
        
        try:
            job = client_custom_model.submit(
                custom_model=custom_model,
                weight_name=weight_name,
                prompt=prompt,
                inf_steps=inf_steps,
                guidance_scale=guidance_scale,
                width=width,
                height=height,
                seed=seed,
                lora_weight=lora_weight,
                api_name="/infer"
            )
            result = job.result()
        except ValueError as e:
            raise gr.Error(e)


        generated_image_path = result[0]  # Esto puede necesitar ser ajustado basado en la estructura real de result
        used_seed = result[1]             # Esto puede necesitar ser ajustado basado en la estructura real de result
        used_prompt = prompt              # El prompt usado es simplemente el prompt procesado
        generated_image_path = load_img(generated_image_path, output_type="str")

        return generated_image_path, used_seed, used_prompt 

    except Exception as e:
        gr.Warning("Error: " + str(e))

def cancel_infer():
    global job
    if job:
        job.cancel()
        return "Job has been cancelled"
    return "No job to cancel"

def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )

def resize_image(image_path, reduction_factor):
    image = Image.open(image_path)
    width, height = image.size
    new_size = (width // reduction_factor, height // reduction_factor)
    resized_image = image.resize(new_size)
    return resized_image


def save_image(image):
    unique_filename = f"resized_image_{uuid.uuid4().hex}.png"
    image.save(unique_filename)
    return unique_filename


def upscale_image(image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name, reduce_factor):
    global client_tile_upscaler

    # image = image[1]
    try:
        client_tile_upscaler = Client(tile_upscaler_url)
        print(f"Loaded custom model from {tile_upscaler_url}")
    except ValueError as e:
        print(f"Failed to load custom model: {e}")
        client_tile_upscaler = None
        raise gr.Error("Failed to load client for " + tile_upscaler_url)
    
    if (reduce_factor > 1):
        image = resize_image(image, reduce_factor)
        image = save_image(image)


    try:
        print(type(image), type(resolution), type(num_inference_steps), type(strength), type(hdr), type(guidance_scale), type(controlnet_strength), type(scheduler_name), type(reduce_factor))

        print(f"Image: {image}")
        print(f"Resolution: {resolution}")
        print(f"Number of Inference Steps: {num_inference_steps}")
        print(f"Strength: {strength}")
        print(f"HDR: {hdr}")
        print(f"Guidance Scale: {guidance_scale}")
        print(f"ControlNet Strength: {controlnet_strength}")
        print(f"Scheduler Name: {scheduler_name}")
        print(f"Reduce Factor: {reduce_factor}")

        job = client_tile_upscaler.submit(
            param_0=handle_file(image),
            param_1=resolution,
            param_2=num_inference_steps,
            param_3=strength,
            param_4=hdr,
            param_5=guidance_scale,
            param_6=controlnet_strength,
            param_7=scheduler_name,
            api_name="/wrapper"
        )
        result = job.result()
    except ValueError as e:
        raise gr.Error(e)

    return [image, result]


def refine_image(apply_refiner, image, model ,prompt, negative_prompt, num_inference_steps, guidance_scale, seed, strength):
    if (not apply_refiner):
        return image
    
    client = InferenceClient()
    refined_image = client.image_to_image(
        handle_file(image), 
        prompt=prompt, 
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale, 
        seed=seed, 
        model=model,
        strength=strength
    )
    return refined_image


css="""
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# lichorosario LoRA Portfolio")
    gr.Markdown(
        "### This is my portfolio.\n"
        "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
        "Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni).\n"
        "Based on [https://huggingface.co/spaces/fffiloni/sd-xl-custom-model](https://huggingface.co/spaces/fffiloni/sd-xl-custom-model) and [https://huggingface.co/spaces/gokaygokay/TileUpscalerV2](https://huggingface.co/spaces/gokaygokay/TileUpscalerV2)"
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_in = gr.Textbox(
                label="Your Prompt",
                info="Don't forget to include your trigger word if necessary"
            )
            style_prompt_in = gr.Textbox(
                label="Your Style Prompt"
            )
            selected_info = gr.Markdown("")
            used_prompt = gr.Textbox(
                label="Used prompt"
            )
            with gr.Column(elem_id="col-container"):
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        inf_steps = gr.Slider(
                            label="Inference steps",
                            minimum=3,
                            maximum=150,
                            step=1,
                            value=25
                        )
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=50.0,
                            step=0.1,
                            value=12
                        )
                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=3072,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=3072,
                            step=32,
                            value=512,
                        )
                                              
                        examples = [
                            [1024,512],
                            [2048,512],
                            [3072, 512]
                        ]
                        gr.Examples(
                            label="Presets",
                            examples=examples,
                            inputs=[width, height],
                            outputs=[]
                        )
            
                    with gr.Row():
                        seed = gr.Slider(
                            label="Seed",
                            info="-1 denotes a random seed",
                            minimum=-1,
                            maximum=423538377342,
                            step=1,
                            value=-1
                        )
                        last_used_seed = gr.Number(
                            label="Last used seed",
                            info="the seed used in the last generation",
                        )
                    lora_weight = gr.Slider(
                        label="LoRa weight",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=1.0
                    )

                with gr.Group():
                    apply_refiner = gr.Checkbox(label="Apply refiner", value=False)
                    with gr.Accordion("Refiner params", open=False) as refiner_params:
                        refiner_prompt = gr.Textbox(lines=3, label="Prompt")
                        refiner_negative_prompt = gr.Textbox(lines=3, label="Negative Prompt")
                        refiner_strength = gr.Slider(
                            label="Strength",
                            minimum=0,
                            maximum=300,
                            step=0.01,
                            value=1
                        )
                        refiner_num_inference_steps = gr.Slider(
                            label="Inference steps",
                            minimum=3,
                            maximum=300,
                            step=1,
                            value=25
                        )
                        refiner_guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=50.0,
                            step=0.1,
                            value=12
                        )
                        refiner_seed = gr.Slider(
                            label="Seed",
                            info="-1 denotes a random seed",
                            minimum=-1,
                            maximum=423538377342,
                            step=1,
                            value=-1
                        )
                        refiner_model = gr.Textbox(label="Model", value="stabilityai/stable-diffusion-xl-refiner-1.0")

                    apply_refiner.change(
                        fn=lambda x: gr.update(visible=x),
                        inputs=apply_refiner,
                        outputs=refiner_params,
                        queue=False,
                        api_name=False,
                    )

        with gr.Column(scale=1):
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=2,
                height="100%"
            )

    submit_btn = gr.Button("Submit")
    cancel_btn = gr.Button("Cancel")


    with gr.Row():
        with gr.Column():
            generated_image = gr.Image(label="Image / Refined Image", type="filepath")
            enhace_button = gr.Button("Enhance Image")

        with gr.Column():
            output_slider = ImageSlider(label="Before / After", type="filepath", show_download_button=False)

    with gr.Accordion("Enhacer params", open=False):
        upscale_reduce_factor = gr.Slider(minimum=1, maximum=10, step=1, label="Reduce Factor", info="1/n")
        upscale_resolution = gr.Slider(minimum=128, maximum=2048, value=1024, step=128, label="Resolution", info="Image width")
        upscale_num_inference_steps = gr.Slider(minimum=1, maximum=150, value=50, step=1, label="Number of Inference Steps")
        upscale_strength = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label="Strength", info="Higher values give more detail")
        upscale_hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        upscale_guidance_scale = gr.Slider(minimum=0, maximum=20, value=12, step=0.5, label="Guidance Scale")
        upscale_controlnet_strength = gr.Slider(minimum=0.0, maximum=2.0, value=0.75, step=0.05, label="ControlNet Strength")
        upscale_scheduler_name = gr.Dropdown(
            choices=["DDIM", "DPM++ 3M SDE Karras", "DPM++ 3M Karras"],
            value="DDIM",
            label="Scheduler"
        )


    selected_index = gr.State(None)

    submit_btn.click(
        fn=infer,
        inputs=[selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight],
        outputs=[generated_image, last_used_seed, used_prompt]
    ).then(refine_image, 
        [apply_refiner, generated_image, refiner_model, refiner_prompt, refiner_negative_prompt, refiner_num_inference_steps, refiner_guidance_scale, refiner_seed, refiner_strength],
        generated_image
    )

    cancel_btn.click(
        fn=cancel_infer,
        outputs=[]
    )


    def clear_output(image_slider):
        return None

    enhace_button.click(
        fn=clear_output,
        inputs=[output_slider],
        outputs=[output_slider]
    ).then(
        upscale_image, 
        [generated_image, upscale_resolution, upscale_num_inference_steps, upscale_strength, upscale_hdr, upscale_guidance_scale, upscale_controlnet_strength, upscale_scheduler_name, upscale_reduce_factor],
        output_slider
    )



    gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index])

demo.launch(show_error=True)