cogen / app.py
momergul
Pushed all model initialization to the main app
d1a5104
raw
history blame
15.7 kB
import spaces
import gradio as gr
import torch
import random
import os
from typing import List, Tuple
from config_generator import generate_complete_game
from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token
import torch
import transformers
from transformers import Idefics2ForConditionalGeneration
from peft import LoraConfig, get_peft_model
from joint_inference import IdeficsJointInferenceModel
# Initialize the model globally
repo = 'lil-lab/cogen'
checkpoint = "HuggingFaceM4/idefics2-8b"
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)'
lora_config = LoraConfig(
r=16, lora_alpha=8,
lora_dropout=0.1,
target_modules=target_modules,
init_lora_weights="gaussian"
)
model = get_peft_model(model, lora_config, adapter_name="initial")
model.load_adapter(repo, "initial", revision="r0_full")
# Add other adapter
new_targets = set()
for n, p in model.named_parameters():
if 'lora' in n:
new_targets.add(n[17:n.find('lora')-1])
new_targets = list(new_targets)
lora_config = LoraConfig(
r=16, lora_alpha=8,
lora_dropout=0.1,
target_modules=new_targets,
init_lora_weights="gaussian"
)
model.add_adapter('final', lora_config)
model.load_adapter(repo, "final", revision="r3_full")
model = IdeficsJointInferenceModel(0.5, 0, model=model).cuda()
model.eval()
css="""
.radio-group .wrap {
display: grid;
grid-template-columns: repeat(5, 1fr);
grid-template-rows: repeat(5, 1fr);
width: 100%;
height: 100%
}
"""
def initialize_game() -> List[List[str]]:
context_dicts = [generate_complete_game() for _ in range(4)]
roles = ["listener"] * 3 + ["speaker"] * 3 + ["listener"] * 3 + ["speaker"] * 3
speaker_images = []
listener_images = []
targets = []
for context_dict in context_dicts:
for i in range(3):
speaker_images.append(context_dict["speaker_context"])
listener_images.append(context_dict["listener_context"])
targets.append(context_dict["targets"][i])
return list(zip(speaker_images, listener_images, targets, roles))
def get_model_response(
model, adapter_name, processor, index_to_token, role: str,
image_paths: List[str], user_message: str = "", target_image: str = ""
) -> str:
if role == "speaker":
img_dir = "tangram_pngs"
print("Starting processing")
input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input(
processor, image_paths, target_image, model.get_listener().device
)
image_paths = [image_paths]
print("Starting inference")
captions = get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths,
processor, img_dir, index_to_token, adapter_name)
print("Done")
response = captions[0]
else: # listener
print("Starting processing")
images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \
s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input(
processor, image_paths, user_message, model.get_listener().device
)
print("Starting inference")
response = get_listener_response(
model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name
)
print("Done")
return response
@spaces.GPU(duration=20)
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name):
if model.model.active_adapter != adapter_name:
model.model.set_adapter(adapter_name)
with torch.no_grad():
captions, _, _, _, _ = model.generate(
images.cuda(), input_tokens.cuda(), attn_mask.cuda(), image_attn_mask.cuda(), label.cuda(),
image_paths, processor, img_dir, index_to_token,
max_steps=30, sampling_type="nucleus", temperature=0.7,
top_k=50, top_p=1, repetition_penalty=1, num_samples=5
)
return captions
@spaces.GPU(duration=20)
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name):
if model.model.active_adapter != adapter_name:
model.model.set_adapter(adapter_name)
with torch.no_grad():
_, _, joint_log_probs = model.comprehension_side([
images.cuda(), l_input_tokens.cuda(), l_attn_mask.cuda(), l_image_attn_mask.cuda(), index_to_token,
s_input_tokens.cuda(), s_attn_mask.cuda(), s_image_attn_mask.cuda(), s_target_mask.cuda(), s_target_label.cuda(),
])
target_idx = joint_log_probs[0].argmax().item()
response = image_paths[target_idx]
return response
def initialize_interaction(model_iteration):
# initialize the overall history
new_history = {
'adapter_name' : 'initial' if model_iteration == "Initial System" else "final",
'image_role_pairs' : initialize_game(),
'conversation' : [],
'turn' : 0,
'num_correct' : 0,
}
# Initialize the first turn (always a listener)
turn = new_history['turn']
image_role_pairs = new_history['image_role_pairs']
speaker_image, listener_image, target_image, _ = image_role_pairs[turn]
target_idx = speaker_image.index(target_image)
new_history['conversation'].extend([
f"TURN: {turn + 1}/12",
f"Generate a description for the target image. Your target is Image {target_idx + 1}"
])
return new_history
def progress_game(user_message, processor, index_to_token, current_state):
# First get the game state
turn = current_state['turn']
image_role_pairs = current_state['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
human_role = "Speaker" if model_role == "listener" else "Listener"
# Next, move on with current turn
if model_role == "listener":
human_context = speaker_image
model_context = listener_image
# If model is a listener, the human must have sent a message
current_state['conversation'].append(f"You: {user_message}")
model_message = get_model_response(
model, current_state['adapter_name'], processor, index_to_token, model_role,
model_context, user_message=user_message
)
model_idx = human_context.index(model_message)
target_idx = human_context.index(target_image)
if int(model_idx) == int(target_idx):
current_state['conversation'].append("The model guessed correctly!\n")
current_state['num_correct'] += 1
else:
current_state['conversation'].append(f"The model guessed incorrectly.\n")
else:
human_context = listener_image
model_context = speaker_image
# If model is a speaker, the human must have made a guess
target_idx = human_context.index(target_image)
current_state['conversation'][-1] += f"{user_message}"
if int(user_message) == target_idx + 1:
current_state['conversation'].append("Correct!\n")
current_state['num_correct'] += 1
else:
current_state['conversation'].append(f"Incorrect!\n")
# We move on to the next turn
current_state['turn'] += 1
acc_message = f"{current_state['num_correct']}/{current_state['turn']}"
turn_message = f"{current_state['turn'] + 1}/12"
if current_state['turn'] == len(image_role_pairs):
current_state['conversation'].append('The game is over!')
return human_context, current_state['conversation'], human_role, turn_message, acc_message, {}
speaker_image, listener_image, target_image, model_role = image_role_pairs[current_state['turn']]
human_role = "Listener" if model_role == "speaker" else "Speaker"
if model_role == "speaker":
human_context = listener_image
model_context = speaker_image
current_state['conversation'].extend([
f"TURN: {current_state['turn'] + 1}/12",
f"Guess the target image given the speaker's description. ",
])
model_message = get_model_response(model, current_state['adapter_name'], processor, index_to_token,
model_role, model_context, target_image=target_image)
current_state['conversation'].append(f"Model: {model_message}")
current_state['conversation'].append("You: The target is Image ")
else:
human_context = speaker_image
model_context = listener_image
target_idx = human_context.index(target_image)
current_state['conversation'].extend([
f"TURN: {current_state['turn'] + 1}/12",
f"Generate a description for the target image. Your target is Image {target_idx + 1}",
])
return human_context, current_state['conversation'], human_role, turn_message, acc_message, current_state
def get_current_images(current_history):
turn = current_history['turn']
image_role_pairs = current_history['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
human_context = listener_image if model_role == "speaker" else speaker_image
return human_context
def get_human_role(current_history):
turn = current_history['turn']
image_role_pairs = current_history['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
return "Listener" if model_role == "speaker" else "Speaker"
def create_app():
with gr.Blocks(css=css) as app:
game_history = gr.State(value={})
gr.Markdown("# Tangram Reference Game")
gr.Markdown(
'### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\
'and press the "Start Game" button. There will be 12 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.'
)
gr.Markdown(
'### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\
'so that your partner can guess what it is.'
)
gr.Markdown(
'### In the listener role, you will be given a description. Your goal will be ' +\
'to select the image that the description best describes (by clicking on the relevant button).'
)
gr.Markdown(
'### Press "Send" to submit your action in either role and make the game proceed.'
)
with gr.Row():
model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration")
start_btn = gr.Button("Start Game")
with gr.Row():
current_role = gr.Textbox(label="YOUR ROLE")
current_turn = gr.Textbox(label="TURN")
accuracy = gr.Textbox(label="FINAL ACCURACY")
with gr.Row():
image_output = gr.Gallery(
label="CONTEXT", show_label=False, elem_id="gallery",
columns=5, rows=2, object_fit="contain", height="250px",
allow_preview=False, container=True
)
with gr.Row():
conversation_output = gr.Textbox(label="Interaction History")
with gr.Column():
user_input = gr.Textbox(label="Your Message as Speaker", interactive=False)
radio_buttons = gr.Radio(
label="Your Guess as Listener",
elem_classes="radio-group",
choices=list(range(1, 11)),
interactive=False,
)
send_btn = gr.Button("Send", interactive=False)
processor = get_processor()
index_to_token = get_index_to_token()
def start_interaction(model_iteration):
# Initialize the interaction
if model_iteration is None:
return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True), {}
current_history = initialize_interaction(model_iteration)
# Unpack the relevant items
images = get_current_images(current_history)
conversation = current_history["conversation"]
role = get_human_role(current_history)
human_listener = role == "Listener"
current_turn = current_history['turn'] + 1
turn_msg = f"{current_turn}/12"
acc_msg = "0/0"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn_msg, acc_msg, \
gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True), gr.update(interactive=False), current_history
def send_message(message, radio_choice, current_state):
nonlocal processor
nonlocal index_to_token
# Game ended
if current_state['turn'] == len(current_state['image_role_pairs']):
return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), \
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, value=None), {}
# Regular game progress
user_output = message if radio_choice is None else radio_choice
images, conversation, role, turn, acc_message, current_state = progress_game(user_output, processor, index_to_token, current_state)
human_listener = role == "Listener"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, \
acc_message, gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), \
gr.update(interactive=True), gr.update(interactive=False), current_state
start_btn.click(
start_interaction,
inputs=[model_iteration],
outputs=[
image_output, conversation_output, current_role, current_turn, accuracy,
user_input, radio_buttons, send_btn, model_iteration, game_history],
queue=False
)
send_btn.click(
send_message,
inputs=[user_input, radio_buttons, game_history],
outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input,
radio_buttons, send_btn, model_iteration, game_history],
queue=True
)
return app
app = create_app()
app.queue()
app.launch()