File size: 7,246 Bytes
319a292
 
 
 
 
 
f173552
319a292
 
 
29bf2ce
319a292
 
 
 
 
 
 
 
 
09dbcd2
 
 
 
 
 
68c7d5f
 
9a54252
68c7d5f
a0bb70b
 
 
 
68c7d5f
 
319a292
 
09dbcd2
319a292
 
 
09dbcd2
319a292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f173552
 
 
 
68c7d5f
 
f173552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319a292
 
f173552
 
 
319a292
 
 
f173552
 
319a292
 
 
 
f173552
319a292
 
f173552
 
 
 
 
 
 
 
319a292
f173552
 
 
319a292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91213b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import re
import requests
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from google.cloud import storage
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from io import BytesIO
from dotenv import load_dotenv
import uvicorn
import json

load_dotenv()

# Variables de entorno
API_KEY = os.getenv("API_KEY")
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")  # Token de Hugging Face

# Validar nombre del bucket
def validate_bucket_name(bucket_name):
    if not re.match(r"^[a-z0-9][a-z0-9\-\.]*[a-z0-9]$", bucket_name):
        raise ValueError(f"El nombre del bucket '{bucket_name}' no es válido. Debe comenzar y terminar con una letra o número.")
    return bucket_name

# Validar nombre del repositorio en Hugging Face
def validate_huggingface_repo_name(repo_name):
    if not isinstance(repo_name, str) or not re.match(r"^[a-zA-Z0-9_.-]+$", repo_name):
        raise ValueError(f"El nombre del repositorio '{repo_name}' no es válido. Debe contener solo letras, números, '-', '_', y '.'")
    if repo_name.startswith(('-', '.')) or repo_name.endswith(('-', '.')) or '..' in repo_name:
        raise ValueError(f"El nombre del repositorio '{repo_name}' contiene caracteres no permitidos. Verifica los caracteres al inicio o final.")
    if len(repo_name) > 96:
        raise ValueError(f"El nombre del repositorio '{repo_name}' es demasiado largo. La longitud máxima es 96 caracteres.")
    return repo_name

# Inicialización del cliente de GCS
try:
    GCS_BUCKET_NAME = validate_bucket_name(GCS_BUCKET_NAME)  # Validar el nombre del bucket
    credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
    storage_client = storage.Client.from_service_account_info(credentials_info)
    bucket = storage_client.bucket(GCS_BUCKET_NAME)
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e:
    print(f"Error al cargar credenciales o bucket: {e}")
    exit(1)

# Inicialización de FastAPI
app = FastAPI()


class DownloadModelRequest(BaseModel):
    model_name: str
    pipeline_task: str
    input_text: str


class GCSStreamHandler:
    def __init__(self, bucket_name):
        self.bucket = storage_client.bucket(bucket_name)

    def file_exists(self, blob_name):
        return self.bucket.blob(blob_name).exists()

    def stream_file_from_gcs(self, blob_name):
        blob = self.bucket.blob(blob_name)
        if not blob.exists():
            raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.")
        return blob.download_as_bytes()

    def upload_file_to_gcs(self, blob_name, data_stream):
        blob = self.bucket.blob(blob_name)
        blob.upload_from_file(data_stream)
        print(f"Archivo {blob_name} subido a GCS.")

    def ensure_bucket_structure(self, model_prefix):
        # Crea automáticamente la estructura en el bucket si no existe
        required_files = ["config.json", "tokenizer.json"]
        for filename in required_files:
            blob_name = f"{model_prefix}/{filename}"
            if not self.file_exists(blob_name):
                print(f"Creando archivo ficticio: {blob_name}")
                self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json")

    def stream_model_files(self, model_prefix, model_patterns):
        model_files = {}
        for pattern in model_patterns:
            blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/"))
            for blob in blobs:
                if re.match(pattern, blob.name.split('/')[-1]):
                    print(f"Archivo encontrado: {blob.name}")
                    model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes())
        return model_files


def download_model_from_huggingface(model_name):
    """
    Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
    """
    model_name = validate_huggingface_repo_name(model_name)  # Validar nombre del repositorio

    file_patterns = [
        "pytorch_model.bin",
        "model.safetensors",
        "config.json",
        "tokenizer.json",
    ]

    # Agregar patrones para fragmentos de modelos
    for i in range(1, 100):
        file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
        file_patterns.append(f"model-{i:05}")

    for filename in file_patterns:
        url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
        headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
        try:
            response = requests.get(url, headers=headers, stream=True)
            if response.status_code == 200:
                blob_name = f"{model_name}/{filename}"
                blob = bucket.blob(blob_name)
                blob.upload_from_file(BytesIO(response.content))
                print(f"Archivo {filename} subido correctamente a GCS.")
        except Exception as e:
            print(f"Archivo {filename} no encontrado: {e}")


@app.post("/predict/")
async def predict(request: DownloadModelRequest):
    """
    Endpoint para realizar predicciones. Si el modelo no existe en GCS, se descarga automáticamente.
    """
    try:
        gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)

        # Verificar si el modelo ya está en GCS
        model_prefix = request.model_name
        model_patterns = [
            r"pytorch_model-\d+-of-\d+",
            r"model-\d+",
            r"pytorch_model.bin",
            r"model.safetensors",
        ]

        if not any(
            gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns
        ):
            print(f"Modelo {model_prefix} no encontrado en GCS. Descargando desde Hugging Face...")
            download_model_from_huggingface(model_prefix)

        # Carga archivos del modelo desde GCS
        model_files = gcs_handler.stream_model_files(model_prefix, model_patterns)

        # Configuración y tokenización
        config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json")
        tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json")

        model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
        state_dict = {}

        for filename, stream in model_files.items():
            state_dict.update(torch.load(stream, map_location="cpu"))

        model.load_state_dict(state_dict)
        tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream))

        # Crear pipeline
        pipeline_task = request.pipeline_task
        if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]:
            raise HTTPException(status_code=400, detail="Unsupported pipeline task")

        pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
        input_text = request.input_text
        result = pipeline_(input_text)

        return {"response": result}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {e}")


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)