gcs / app.py
Hjgugugjhuhjggg's picture
Update app.py
f173552 verified
raw
history blame
6.06 kB
import os
import re
import json
import requests
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from google.cloud import storage
from google.auth import exceptions
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from io import BytesIO
from dotenv import load_dotenv
import uvicorn
load_dotenv()
# Variables de entorno
API_KEY = os.getenv("API_KEY")
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Token de Hugging Face
# Inicializaci贸n del cliente de GCS
try:
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
storage_client = storage.Client.from_service_account_info(credentials_info)
bucket = storage_client.bucket(GCS_BUCKET_NAME)
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError) as e:
print(f"Error al cargar credenciales o bucket: {e}")
exit(1)
# Inicializaci贸n de FastAPI
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
class GCSStreamHandler:
def __init__(self, bucket_name):
self.bucket = storage_client.bucket(bucket_name)
def file_exists(self, blob_name):
return self.bucket.blob(blob_name).exists()
def stream_file_from_gcs(self, blob_name):
blob = self.bucket.blob(blob_name)
if not blob.exists():
raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.")
return blob.download_as_bytes()
def upload_file_to_gcs(self, blob_name, data_stream):
blob = self.bucket.blob(blob_name)
blob.upload_from_file(data_stream)
print(f"Archivo {blob_name} subido a GCS.")
def ensure_bucket_structure(self, model_prefix):
# Crea autom谩ticamente la estructura en el bucket si no existe
required_files = ["config.json", "tokenizer.json"]
for filename in required_files:
blob_name = f"{model_prefix}/{filename}"
if not self.file_exists(blob_name):
print(f"Creando archivo ficticio: {blob_name}")
self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json")
def stream_model_files(self, model_prefix, model_patterns):
model_files = {}
for pattern in model_patterns:
blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/"))
for blob in blobs:
if re.match(pattern, blob.name.split('/')[-1]):
print(f"Archivo encontrado: {blob.name}")
model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes())
return model_files
def download_model_from_huggingface(model_name):
"""
Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
"""
file_patterns = [
"pytorch_model.bin",
"model.safetensors",
"config.json",
"tokenizer.json",
]
# Agregar patrones para fragmentos de modelos
for i in range(1, 100):
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
file_patterns.append(f"model-{i:05}")
for filename in file_patterns:
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
try:
response = requests.get(url, headers=headers, stream=True)
if response.status_code == 200:
blob_name = f"{model_name}/{filename}"
blob = bucket.blob(blob_name)
blob.upload_from_file(BytesIO(response.content))
print(f"Archivo {filename} subido correctamente a GCS.")
except Exception as e:
print(f"Archivo {filename} no encontrado: {e}")
@app.post("/predict/")
async def predict(request: DownloadModelRequest):
"""
Endpoint para realizar predicciones. Si el modelo no existe en GCS, se descarga autom谩ticamente.
"""
try:
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
# Verificar si el modelo ya est谩 en GCS
model_prefix = request.model_name
model_patterns = [
r"pytorch_model-\d+-of-\d+",
r"model-\d+",
r"pytorch_model.bin",
r"model.safetensors",
]
if not any(
gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns
):
print(f"Modelo {model_prefix} no encontrado en GCS. Descargando desde Hugging Face...")
download_model_from_huggingface(model_prefix)
# Carga archivos del modelo desde GCS
model_files = gcs_handler.stream_model_files(model_prefix, model_patterns)
# Configuraci贸n y tokenizaci贸n
config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json")
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json")
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
state_dict = {}
for filename, stream in model_files.items():
state_dict.update(torch.load(stream, map_location="cpu"))
model.load_state_dict(state_dict)
tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream))
# Crear pipeline
pipeline_task = request.pipeline_task
if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
input_text = request.input_text
result = pipeline_(input_text)
return {"response": result}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)