limingj's picture
Create app.py
76c6b8a verified
raw
history blame
984 Bytes
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
# 加载模型和处理器
model_name = "microsoft/llava-med-v1.5-mistral-7b"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained(model_name)
def predict(image, question):
# 将图像和问题处理为模型输入格式
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
# 生成答案
with torch.no_grad():
outputs = model.generate(**inputs)
# 解码输出
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return answer
# 创建 Gradio 界面
interface = gr.Interface(
fn=predict,
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(label="Question")],
outputs="text",
title="Medical Visual Question Answering"
)
if __name__ == "__main__":
interface.launch()