File size: 14,928 Bytes
db694c4
b034166
 
db694c4
b2b3b83
dec332b
 
9b5e886
be36d9d
e29216a
db694c4
bd54294
ac8a60b
 
 
 
 
 
 
 
 
 
 
 
 
db694c4
dec332b
8434471
be36d9d
 
 
 
 
 
23e06a5
ac8a60b
dec332b
b2b3b83
db694c4
9b5e886
a561bc6
db694c4
8c107a7
e29216a
 
 
 
 
 
 
47e9340
b2b3b83
 
 
 
 
 
 
69e20d0
 
 
db694c4
 
69e20d0
 
be36d9d
 
 
 
 
a561bc6
 
 
d026604
 
db694c4
d026604
 
 
db694c4
d026604
a561bc6
 
d026604
db694c4
d026604
c81f36b
 
6ba18f0
c81f36b
3557a96
 
b2b3b83
 
 
 
 
 
 
 
 
 
 
 
 
 
d026604
db694c4
47e9340
dec332b
b034166
47e9340
e29216a
 
 
db694c4
 
d026604
69e20d0
dec332b
db694c4
b034166
 
 
dec332b
 
db694c4
8434471
 
 
 
 
 
c81f36b
 
 
be36d9d
 
 
db694c4
9b5e886
d026604
69e20d0
dec332b
47e9340
 
 
 
bd54294
 
ac8a60b
47e9340
9b5e886
 
be36d9d
9b5e886
 
 
be36d9d
 
 
 
9b5e886
 
 
 
b034166
d026604
be36d9d
 
 
b034166
 
 
db694c4
47e9340
 
 
 
 
 
 
 
 
 
 
 
bd54294
 
 
 
 
 
 
47e9340
 
 
bd54294
 
ac8a60b
bd54294
47e9340
bd54294
 
 
 
ac8a60b
 
 
 
 
bd54294
ac8a60b
bd54294
 
ac8a60b
 
bd54294
ac8a60b
bd54294
 
 
ac8a60b
 
 
 
 
 
 
 
 
 
 
 
bd54294
69e20d0
ac8a60b
 
 
69e20d0
 
ac8a60b
db694c4
8434471
69e20d0
 
8434471
 
69e20d0
8434471
69e20d0
ac8a60b
 
69e20d0
8434471
ac8a60b
8434471
ac8a60b
 
8434471
 
ac8a60b
8434471
ac8a60b
69e20d0
 
ac8a60b
 
 
 
 
 
 
 
47e9340
 
 
bd54294
 
ac8a60b
47e9340
 
ac8a60b
47e9340
 
b034166
 
 
 
dec332b
 
 
47e9340
dec332b
47e9340
dec332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e20d0
 
 
 
 
 
dec332b
 
 
 
 
db694c4
 
 
dec332b
 
 
69e20d0
db694c4
 
dec332b
 
 
e29216a
dec332b
 
db694c4
 
69e20d0
 
e29216a
69e20d0
 
 
 
e29216a
ac8a60b
 
db694c4
d026604
47e9340
69e20d0
 
 
47e9340
 
db694c4
b034166
dec332b
 
 
b034166
 
dec332b
b034166
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import streamlit as st
from streamlit_feedback import streamlit_feedback

import os
import pandas as pd
import base64
from io import BytesIO
import sqlite3
import uuid
import yaml

import chromadb
from llama_index.core import (
            VectorStoreIndex, 
            SimpleDirectoryReader,
            StorageContext,
            Document
)
from llama_index.vector_stores.chroma.base import ChromaVectorStore
from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.tools import QueryEngineTool
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import Settings

from vision_api import get_transcribed_text
from qna_prompting import get_qna_question_tool, evaluate_qna_answer_tool
from prompt_engineering import (
            system_content, 
            textbook_content, 
            winnie_the_pooh_prompt, 
            introduction_line
)

import nest_asyncio
nest_asyncio.apply()

# App title
st.set_page_config(page_title="πŸ»πŸ“š Study Bear 🍯")
openai_api = os.getenv("OPENAI_API_KEY")

with open("./config/model_config_advanced.yml", "r") as file_reader:
    model_config = yaml.safe_load(file_reader)

input_files = model_config["input_data"]["source"]
embedding_model = model_config["embeddings"]["embedding_base_model"]
fine_tuned_path = model_config["embeddings"]["fine_tuned_embedding_model"]
persisted_vector_db = model_config["vector_store"]["persisted_path"]
questionaire_db_path = model_config["questionaire_data"]["db_path"]

data_df = pd.DataFrame(
    {
        "Completion": [30, 40, 100, 10],
    }
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]

bear_img_path = "./resource/disney-cuties-little-winnie-the-pooh-emoticon.png"
piglet_img_path = "./resource/disney-cuties-piglet-emoticon.png"

# Replicate Credentials
with st.sidebar:
    st.title("🍯🐝 Study Bear πŸ»πŸ’­")
    st.write("Just like Pooh needs honey, success requires hard work – no shortcuts allowed!")
    wtp_mode = st.toggle('Winnie-the-Pooh mode', value=False)
    if wtp_mode:
        system_content = system_content + winnie_the_pooh_prompt
    textbook_content = system_content + textbook_content

    if openai_api:
        pass
    elif "OPENAI_API_KEY" in st.secrets:
        st.success("API key already provided!", icon="βœ…")
        openai_api = st.secrets["OPENAI_API_KEY"]
    else:
        openai_api = st.text_input("Enter OpenAI API token:", type="password")
        if not (openai_api.startswith("sk-") and len(openai_api)==51):
            st.warning("Please enter your credentials!", icon="⚠️")
        else:
            st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")

    ### for streamlit purpose
    os.environ["OPENAI_API_KEY"] = openai_api

    st.subheader("Models and parameters")
    selected_model = st.sidebar.selectbox(label="Choose an OpenAI model", 
                                          options=["gpt-3.5-turbo-0125", "gpt-4-0125-preview"], 
                                          index=1,
                                          key="selected_model")
    temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0, 
                                    value=0.0, step=0.01)
    st.data_editor(
        data_df,
        column_config={
            "Completion": st.column_config.ProgressColumn(
                            "Completion %",
                            help="Percentage of content covered",
                            format="%.1f%%",
                            min_value=0,
                            max_value=100,
            ),
        },
        hide_index=False,
    )

    st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")

if "init" not in st.session_state.keys():
    st.session_state.init = {"warm_started": "No"}
    st.session_state.feedback = False

if "image_prompt" not in st.session_state.keys():
    st.session_state.image_prompt = False

# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", 
                                  "content": introduction_line,
                                  "type": "text"}]

if "feedback_key" not in st.session_state:
    st.session_state.feedback_key = 0

if "release_file" not in st.session_state:
    st.session_state.release_file = "false"

if "question_id" not in st.session_state:
    st.session_state.question_id = None

if "qna_answer" not in st.session_state:
    st.session_state.qna_answer = None

if "reasons" not in st.session_state:
    st.session_state.reasons = None

if "user_id" not in st.session_state:
    st.session_state.user_id = str(uuid.uuid4())

def clear_chat_history():

    st.session_state.messages = [{"role": "assistant", 
                                  "content": introduction_line,
                                  "type": "text"}]
    chat_engine = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   fine_tuned_path=fine_tuned_path,
                                   system_content=system_content,
                                   persisted_vector_db=persisted_vector_db)
    chat_engine.reset()
    st.toast("yumyum, what was I saying again? πŸ»πŸ’¬", icon="🍯")

def clear_question_history(user_id):

    con = sqlite3.connect(questionaire_db_path)
    cur = con.cursor()
    sql_string = f"""
                  DELETE FROM answer_tbl
                  WHERE user_id='{user_id}'
    """
    res = cur.execute(sql_string)
    con.commit()
    con.close()
    st.toast("the tale of one thousand and one questions, reset! 🧨🧨", icon="πŸ“")

st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
st.sidebar.button("Clear Question History", 
                  on_click=clear_question_history,
                  kwargs={"user_id": st.session_state.user_id})
if st.sidebar.button("I want to submit a feedback!"):
    st.session_state.feedback = True
    st.session_state.feedback_key += 1  # overwrite feedback component

@st.cache_resource
def get_document_object(input_files):
    documents = SimpleDirectoryReader(input_files=input_files).load_data()
    document = Document(text="\n\n".join([doc.text for doc in documents]))
    return document

@st.cache_resource
def get_llm_object(selected_model, temperature):
    llm = OpenAI(model=selected_model, temperature=temperature)
    return llm

@st.cache_resource
def get_embedding_model(model_name, fine_tuned_path=None):
    if fine_tuned_path is None:
        print(f"loading from `{model_name}` from huggingface")
        embed_model = HuggingFaceEmbedding(model_name=model_name)
    else:
        print(f"loading from local `{fine_tuned_path}`")
        embed_model = fine_tuned_path
    return embed_model

@st.cache_resource
def get_query_engine(input_files, llm_model, temperature,
                     embedding_model, fine_tuned_path,
                     system_content, persisted_vector_db):
    
    llm = get_llm_object(llm_model, temperature)
    embedded_model = get_embedding_model(
                        model_name=embedding_model, 
                        fine_tuned_path=fine_tuned_path
    )
    Settings.llm = llm
    Settings.chunk_size = 1024
    Settings.embed_model = embedded_model

    if os.path.exists(persisted_vector_db):
        print("loading from vector database - chroma")
        db = chromadb.PersistentClient(path=persisted_vector_db)
        chroma_collection = db.get_or_create_collection("quickstart")
        vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        storage_context = StorageContext.from_defaults(vector_store=vector_store)

        index = VectorStoreIndex.from_vector_store(
            vector_store=vector_store,
            storage_context=storage_context
        )
    else:
        print("create new chroma vector database..")
        documents = SimpleDirectoryReader(input_files=input_files).load_data()
        
        db = chromadb.PersistentClient(path=persisted_vector_db)
        chroma_collection = db.get_or_create_collection("quickstart")
        vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        
        nodes = Settings.node_parser.get_nodes_from_documents(documents)
        storage_context = StorageContext.from_defaults(vector_store=vector_store)
        storage_context.docstore.add_documents(nodes)

        index = VectorStoreIndex(nodes, storage_context=storage_context)
    
    memory = ChatMemoryBuffer.from_defaults(token_limit=100_000)
    hi_content_engine = index.as_query_engine(
                            memory=memory,
                            system_prompt=system_content,
                            similarity_top_k=10,
                            verbose=True,
                            streaming=True
    )
    hi_textbook_query_description = """
        Use this tool to extract content from the query engine,
        which is built by ingesting textbook content from `Health Insurance 7th Edition`,
        that has 15 chapters in total. When user wants to learn more about a 
        particular chapter, this tool will help to assist user to get better
        understanding of the content of the textbook. 
    """
    
    hi_query_tool = QueryEngineTool.from_defaults(
                        query_engine=hi_content_engine,
                        name="health_insurance_textbook_query_engine",
                        description=hi_textbook_query_description
    )

    agent = OpenAIAgent.from_tools(tools=[
                                        hi_query_tool, 
                                        get_qna_question_tool,
                                        evaluate_qna_answer_tool
                                    ],
                                   max_function_calls=1,
                                   llm=llm, 
                                   verbose=True,
                                   system_prompt=textbook_content)
    print("loaded AI agent, let's begin the chat!")
    print("="*50)
    print("")

    return agent

def generate_llm_response(prompt_input, tool_choice="auto"):
    chat_agent = get_query_engine(input_files=input_files, 
                                   llm_model=selected_model, 
                                   temperature=temperature,
                                   embedding_model=embedding_model,
                                   fine_tuned_path=fine_tuned_path,
                                   system_content=system_content,
                                   persisted_vector_db=persisted_vector_db)
    
    # st.session_state.messages
    response = chat_agent.stream_chat(prompt_input, tool_choice=tool_choice)
    return response

def handle_feedback(user_response):
    st.toast("βœ”οΈ Feedback received!")
    st.session_state.feedback = False

def handle_image_upload():
    st.session_state.release_file = "true"

# Warm start
if st.session_state.init["warm_started"] == "No":
    clear_chat_history()
    st.session_state.init["warm_started"] = "Yes"

# Image upload option
with st.sidebar:
    image_file = st.file_uploader("Upload your image here...", 
                                  type=["png", "jpeg", "jpg"],
                                  on_change=handle_image_upload)

    if st.session_state.release_file == "true" and image_file:
        with st.spinner("Uploading..."):
            b64string = base64.b64encode(image_file.read()).decode('utf-8')
            message = {
                    "role": "user", 
                    "content": b64string,
                    "type": "image"}
            st.session_state.messages.append(message)

            transcribed_msg = get_transcribed_text(b64string)
            message = {
                    "role": "admin", 
                    "content": transcribed_msg,
                    "type": "text"}
            st.session_state.messages.append(message)
            st.session_state.release_file = "false"

# Display or clear chat messages
for message in st.session_state.messages:
    if message["role"] == "admin":
        continue
    elif message["role"] == "user":
        avatar = piglet_img_path
    elif message["role"] == "assistant":
        avatar = bear_img_path
    
    with st.chat_message(message["role"], avatar=avatar):
        if message["type"] == "text":
            st.write(message["content"])
        elif message["type"] == "image":
            img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
            st.image(img_io)

# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
    st.session_state.messages.append({"role": "user", 
                                      "content": prompt, 
                                      "type": "text"})
    with st.chat_message("user", avatar=piglet_img_path):
        st.write(prompt)

# Retrieve text prompt from image submission
if prompt is None and \
   st.session_state.messages[-1]["role"] == "admin":
    st.session_state.image_prompt = True
    prompt = st.session_state.messages[-1]["content"]

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant", avatar=bear_img_path):
        with st.spinner("πŸ§ΈπŸ’€ Thinking... πŸ»πŸ’­"):
            if st.session_state.image_prompt:
                response = generate_llm_response(
                                prompt, 
                                tool_choice="health_insurance_textbook_query_engine"
                            )
                st.session_state.image_prompt = False
            else:
                response = generate_llm_response(prompt, tool_choice="auto")
            placeholder = st.empty()
            full_response = ""
            for token in response.response_gen:
                token = token.replace("\n", "  \n") \
                             .replace("$", "\$") \
                             .replace("\[", "$$")
                full_response += token
                placeholder.markdown(full_response)
            placeholder.markdown(full_response)

    message = {"role": "assistant", 
               "content": full_response,
               "type": "text"}
    st.session_state.messages.append(message)

# Trigger feedback
if st.session_state.feedback:
    result = streamlit_feedback(
                feedback_type="thumbs",
                optional_text_label="[Optional] Please provide an explanation",
                on_submit=handle_feedback,
                key=f"feedback_{st.session_state.feedback_key}"
    )